I would like to know the difference between PyTorch Parameter and Tensor?
The existing answer is for the old PyTorch where variables are being used?
This is the whole idea of the Parameter class (attached) in a single image.
Since it is sub-classed from Tensor it is a Tensor.
But there is a trick. Parameters that are inside of a module are added to the list of Module parameters. If m is your module m.parameters() will hold your parameter.
Here is the example:
class M(nn.Module):
def __init__(self):
super().__init__()
self.weights = nn.Parameter(torch.randn(2, 2))
self.bias = nn.Parameter(torch.zeros(2))
def forward(self, x):
return x # self.weights + self.bias
m=M()
m.parameters()
list(m.parameters())
---
[Parameter containing:
tensor([[ 0.5527, 0.7096],
[-0.2345, -1.2346]], requires_grad=True), Parameter containing:
tensor([0., 0.], requires_grad=True)]
You see how the parameters will show what we defined.
And if we just add a tensor inside a class, like self.t = Tensor, it will not show in the parameters list. That is literally it. Nothing fancy.
Adding to #prosti's answer, a nn.Module class, doesn't always explicitly knows what Tensor objects it should optimize for. If you go through this simple commented piece of code, it could clarify it further.
import torch
from torch import nn
# Simple Objective : Learn a function that maps [1,1] -> [0,0]
x = torch.ones(2) # input tensor
y = torch.zeros(2) # expected output
# Model 1
class M1(nn.Module):
def __init__(self):
super().__init__()
self.weights = nn.Parameter(torch.randn(2, 2))
self.bias = nn.Parameter(torch.zeros(2))
def forward(self, x):
return x # self.weights + self.bias
# Model 2
class M2(nn.Module):
def __init__(self):
super().__init__()
# though the Tensor Objects below can undergo backprop and minimize some loss
# our model class doesn't know, it should use these tensors during optimization
self.weights = torch.randn(2,2).requires_grad_(True)
self.bias = torch.zeros(2).requires_grad_(True)
def forward(self, x):
return x # self.weights + self.bias
m1=M1()
m2 = M2()
# Bunch of parameters get printed
print('Model 1 params : ')
print(list(m1.parameters()))
# This is empty, meaning, there is no parameter for model to optimize
# In the forward pass, model just knows to use these
# `weight` and `bias` tensor to do some operations over the input.
# But model doesn't know, it should optimize over those `weight` and `bias` tensors objects
print('Model 2 params : ')
print(list(m2.parameters()))
# Initialize the loss function
loss_fn = nn.MSELoss(reduction='mean')
## ===== Training ===== ##
# Trainer
def train_loop(model, loss_fn=loss_fn):
# Simple optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for i in range(5):
# Compute prediction and loss
pred = model(x)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"loss > {loss.item()}")
# ====== Train Model 1 ====== #
# loss will keep on decreasing, as model_1 finds better weights for
train_loop( m1 )
# ====== Trying to Train Model 2 ====== #
# Code breaks, at this line : optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Reason being, there is no any parameters to optimize for.
train_loop( m2 )
For further clarification, check out this short blog implementing pytorch's nn.Linear module.
Related
I'm trying to get my toy network to learn a sine wave.
I output (via tanh) a number between -1 and 1, and I want the network to minimise the following loss, where self(x) are the predictions.
loss = -torch.mean(self(x)*y)
This should be equivalent to trading a stock with a sinusoidal price, where self(x) is our desired position, and y are the returns of the next time step.
The issue I'm having is that the network doesn't learn anything. It does work if I change the loss function to be torch.mean((self(x)-y)**2) (MSE), but this isn't what I want. I'm trying to focus the network on 'making a profit', not making a prediction.
I think the issue may be related to the convexity of the loss function, but I'm not sure, and I'm not certain how to proceed. I've experimented with differing learning rates, but alas nothing works.
What should I be thinking about?
Actual code:
%load_ext tensorboard
import matplotlib.pyplot as plt; plt.rcParams["figure.figsize"] = (30,8)
import torch;from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F;import pytorch_lightning as pl
from torch import nn, tensor
def piecewise(x): return 2*(x>0)-1
class TsDs(torch.utils.data.Dataset):
def __init__(self, s, l=5): super().__init__();self.l,self.s=l,s
def __len__(self): return self.s.shape[0] - 1 - self.l
def __getitem__(self, i): return self.s[i:i+self.l], torch.log(self.s[i+self.l+1]/self.s[i+self.l])
def plt(self): plt.plot(self.s)
class TsDm(pl.LightningDataModule):
def __init__(self, length=5000, batch_size=1000): super().__init__();self.batch_size=batch_size;self.s = torch.sin(torch.arange(length)*0.2) + 5 + 0*torch.rand(length)
def train_dataloader(self): return DataLoader(TsDs(self.s[:3999]), batch_size=self.batch_size, shuffle=True)
def val_dataloader(self): return DataLoader(TsDs(self.s[4000:]), batch_size=self.batch_size)
dm = TsDm()
class MyModel(pl.LightningModule):
def __init__(self, learning_rate=0.01):
super().__init__();self.learning_rate = learning_rate
super().__init__();self.learning_rate = learning_rate
self.conv1 = nn.Conv1d(1,5,2)
self.lin1 = nn.Linear(20,3);self.lin2 = nn.Linear(3,1)
# self.network = nn.Sequential(nn.Conv1d(1,5,2),nn.ReLU(),nn.Linear(20,3),nn.ReLU(),nn.Linear(3,1), nn.Tanh())
# self.network = nn.Sequential(nn.Linear(5,5),nn.ReLU(),nn.Linear(5,3),nn.ReLU(),nn.Linear(3,1), nn.Tanh())
def forward(self, x):
out = x.unsqueeze(1)
out = self.conv1(out)
out = out.reshape(-1,20)
out = nn.ReLU()(out)
out = self.lin1(out)
out = nn.ReLU()(out)
out = self.lin2(out)
return nn.Tanh()(out)
def step(self, batch, batch_idx, stage):
x, y = batch
loss = -torch.mean(self(x)*y)
# loss = torch.mean((self(x)-y)**2)
print(loss)
self.log("loss", loss, prog_bar=True)
return loss
def training_step(self, batch, batch_idx): return self.step(batch, batch_idx, "train")
def validation_step(self, batch, batch_idx): return self.step(batch, batch_idx, "val")
def configure_optimizers(self): return torch.optim.SGD(self.parameters(), lr=self.learning_rate)
#logger = pl.loggers.TensorBoardLogger(save_dir="/content/")
mm = MyModel(0.1);trainer = pl.Trainer(max_epochs=10)
# trainer.tune(mm, dm)
trainer.fit(mm, datamodule=dm)
#
If I understand you correctly, I think that you were trying to maximize the unnormalized correlation between the network's prediction, self(x), and the target value y.
As you mention, the problem is the convexity of the loss wrt the model weights. One way to see the problem is to consider that the model is a simple linear predictor w'*x, where w is the model weights, w' it's transpose, and x the input feature vector (assume a scalar prediction for now). Then, if you look at the derivative of the loss wrt the weight vector (i.e., the gradient), you'll find that it no longer depends on w!
One way to fix this is change the loss to,
loss = -torch.mean(torch.square(self(x)*y))
or
loss = -torch.mean(torch.abs(self(x)*y))
You will have another big problem, however: these loss functions encourage unbound growth of the model weights. In the linear case, one solves this by a Lagrangian relaxation of a hard constraint on, for example, the norm of the model weight vector. I'm not sure how this would be done with neural networks as each layer would need it's own Lagrangian parameter...
I wrote a short snippet to train a classification model, and learn the learning rate of its optimization algorithm. In my example I tried to update weights of a network in an inner optimization loop and to learn the learning rate of the weight updates using an outer optimization loop (meta-optimization). I'm getting the error:
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [3, 10]], which is output 0 of AsStridedBackward0, is at version 12; expected version 2 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
My code snippet is as following (NOTE: I'm using _stateless, an experimental functional API for nn. You need to run with the nightly build of pytorch.)
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils import _stateless
class MyDataset(Dataset):
def __init__(self, N):
self.N = N
self.x = torch.rand(self.N, 10)
self.y = torch.randint(0, 3, (self.N,))
def __len__(self):
return self.N
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(10, 10)
self.fc2 = nn.Linear(10, 3)
self.relu = nn.ReLU()
self.alpha = nn.Parameter(torch.randn(1))
self.beta = nn.Parameter(torch.randn(1))
def forward(self, x):
y = self.relu(self.fc1(x))
return self.fc2(y)
epochs = 20
N = 100
dataset = DataLoader(dataset=MyDataset(N), batch_size=10)
model = MyModel()
loss_func = nn.CrossEntropyLoss()
optim = optim.Adam([model.alpha], lr=1e-3)
params = dict(model.named_parameters())
for i in range(epochs):
model.train()
train_loss = 0
for batch_idx, (x, y) in enumerate(dataset):
logits = _stateless.functional_call(model, params, x) # predict
loss_inner = loss_func(logits, y) # loss
optim.zero_grad() # reset grad
loss_inner.backward(create_graph=True, inputs=params.values()) # compute grad
train_loss += loss_inner.item() # store loss
for k, p in params.items():
if k is not 'alpha' and k is not 'beta':
p.update = - model.alpha * p.grad
params[k] = p + p.update # update weight
print('Train Epoch: {}\tLoss: {:.6f}'.format(i, train_loss / N))
logits = _stateless.functional_call(model, params, x) # predict
loss_meta = loss_func(logits, y)
loss_meta.backward()
loss_meta.step()
From the error message, I understand that the issue comes from weight update for the weights of the second layer of the network, which points to an error in my inner loop optimization. Any suggestions would be appreciated.
Check this link and save PARAMs per each epoch and use same inner batch:
https://discuss.pytorch.org/t/issue-using-parameters-internal-method/134549/11
for i in range(epochs):
model.train()
train_loss = 0
params = dict(model.named_parameters()) # add this
for batch_idx, (x, y) in enumerate(dataset):
params = {k: v.clone() for k,v in params.items()} # add this
logits = _stateless.functional_call(model, params, x) # predict
loss_inner = loss_func(logits, y)
..................
You should be updating params[k].data instead of params[k]
(Deleted the example to avoid distraction)
Let me enter in a kind of fundamental discussion (not an answer to your question).
If I undertand correctly you want to compute loss(f(w[i], x)) , and computing the w[i+1,j] = w[i,j] + g(v[j], w[i,j].grad(w.r.t loss)) . Then in the end you want to compute v[j+1] = v[j] + v[j].grad(w.r.t loss).
The gradient of v[j] is computed using the backward propagation, as a function of grad w[i,j]. So what you are trying to do is to choose v[j] that results in a good w[i,j]. I would ask: why would you bother about v[j] if you can control w[i,j] directly? And that's what the standard approach.
I'm trying to use Pytorch to take a HeartDisease.csv and predict whether the patient has heart disease or not... the .csv provides 13 inputs and 1 target
I'm using BCELoss and I'm having trouble understanding how to write an accuracy check function.
My num_samples is correct but not my num_correct. I think this is a result of not understanding the predictions tensor. Right now my num_correct is usually over 8000 while my num_samples is 303...
Any insight on how to write this check accuracy function is much appreciated
I wrote this on a google co lab
#imports
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import pandas as pd
#create fully connected network
class NN(nn.Module):
def __init__(self, input_size, num_classes):
super(NN, self).__init__()
self.outputs = nn.Linear(input_size, 1)
def forward(self, x):
x = self.outputs(x)
return torch.sigmoid(x)
#set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#hyperparameters
input_size = 13 # 13 inputs
num_classes = 1 # heartdisease or not
learning_rate = 0.001
batch_size = 64
num_epochs = 1
#load data
class MyDataset(Dataset):
def __init__(self, root, n_inp):
self.df = pd.read_csv(root)
self.data = self.df.to_numpy()
self.x , self.y = (torch.from_numpy(self.data[:,:n_inp]),
torch.from_numpy(self.data[:,n_inp:]))
def __getitem__(self, idx):
return self.x[idx, :], self.y[idx,:]
def __len__(self):
return len(self.data)
train_dataset = MyDataset("heart.csv", input_size)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle =True)
test_dataset = MyDataset("heart.csv", input_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle =True)
#initialize network
model = NN(input_size=input_size, num_classes=num_classes).to(device)
#loss and optimizer
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
#train network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
#get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
#forward
scores = model(data.float())
targets = targets.float()
loss = criterion(scores, targets)
#backward
optimizer.zero_grad()
loss.backward()
#grad descent or adam step
optimizer.step()
#check accuracy of model
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x.float())
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print("Got {} / {} with accuracy {}".format(num_correct, num_samples, float(num_correct)/float(num_samples)*100))
model.train()
print("checking accuracy on training data")
check_accuracy(train_loader, model)
print("checking accuracy on test data")
check_accuracy(test_loader, model)
Note: Don't fool yourself. A single linear layer + a sigmoid + BCE loss = logistic regression. This is a linear model, so just take note of that when referring to it as a "neural network", which is a term usually reserved for similar networks but with at least one hidden layer and nonlinear activations.
The sigmoid layer at the end of your model's forward() function returns an (N,1)-sized tensor, where N is the batch size. In other words, it returns a scalar for every data point. Each scalar is a value between 0 and 1 (this is the range of the sigmoid function).
The idea is to interpret those scalars as probabilities corresponding to the positive class. Suppose 1 corresponds to heart disease, and 0 corresponds to no heart disease; heart disease is the positive class, and no heart disease is the negative class. Now suppose a score is 0.6. This might be interpreted as a 60% chance that the associated label is heart disease, and a 40% chance that the associated label is no heart disease. This interpretation of the sigmoid output is what motivates the BCE loss to begin with (it's ultimately just a negative log likelihood).
So what you might do is check if your scores are greater than 0.5. If so, predict heart disease. If not, predict no heart disease.
Right now, you're computing maximums from the scores across dimension 1, which does nothing because dimension 1 is already of size 1; taking the maximum of a single value simply gives you that value.
Try something like this:
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x.float())
// Create a Boolean tensor (True for scores > 0.5, False for others)
// and then cast it to a long tensor (Trues -> 1, Falses -> 0)
predictions = (scores > 0.5).long()
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print("Got {} / {} with accuracy {}".format(num_correct, num_samples, float(num_correct)/float(num_samples)*100))
model.train()
You may also want to squeeze your prediction and target tensors to size (N) instead of (N,1), though I'm not sure it's necessary in your case.
I have a question regarding the validation Data.
I have this neural network and I divided my data into train_generator, val_generator, test_generator.
I made a custom model with a custom fit.
class MyModel(tf.keras.Model):
def __init__(self):
def __call__(.....)
def train_step(....)
then I have:
train_generator = DataGenerator(....)
val_generator = DataGenerator(....)
test_generator = DataGenerator(....)
then :
model = MyModel()
model.compile(optimizer=keras.optimizers.Adam(clipnorm=5.),
metrics=["accuracy"])
model.fit(train_generator, validation_data = val_generator, epochs=40)
ok and the program gives me no errors
But my question is : how can I know what happens with my validation_data ?
Is it processed the same way as the train_data ( train_generator ) in the train_step function ?
Or do I need to specify how to process the validation data ?
If it helps I will also live MyModel class
class MyModel(tf.keras.Model):
def __init__(self):
super(MyModel2, self).__init__()
self.dec2 = Decoder2()
def __call__(self, y_hat, **kwargs):
print(y_hat.shape)
z_hat = self.dec2(y_hat)
return z_hat
def train_step(self, dataset):
with tf.GradientTape() as tape:
y_hat = dataset[0]
z_true = dataset[1]
z_pred = self(y_hat, training=True)
#print("This is z_true : ", z_true.shape)
#print("This is z_pred : ", z_pred.shape)
loss = tf.reduce_mean(tf.abs(tf.cast(z_pred, tf.float64) - tf.cast(z_true, tf.float64)))
print("loss: ", loss)
global_loss.append(loss)
# Compute gradients. TRE SA FAC GRADIENT CLIPPING
trainable_vars = self.trainable_variables
gradients = tape.gradient(loss, trainable_vars)
# Update weights
self.optimizer.apply_gradients(zip(gradients, trainable_vars))
# Update metrics (includes the metric that tracks the loss)
self.compiled_metrics.update_state(z_true, z_pred)
# Return a dict mapping metric names to current value
return {m.name: m.result() for m in self.metrics}
You have to add a test_step(self, data) function to your MyModel class as you can see it here: Providing your own evaluation step
I have some troubles finding some example on the great www to how i implement a recurrent neural network with LSTM layer into my current Deep q-network in Pytorch so it become a DRQN.. Bear with me i am just getting started..
Futhermore, I am NOT working with images processing, thereby CNN so do not worry about this. My states are purely temperatures values.
Here is my code that i am currently train my DQN with:
# Importing the libraries
import numpy as np
import random # random samples from different batches (experience replay)
import os # For loading and saving brain
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim # for using stochastic gradient descent
import torch.autograd as autograd # Conversion from tensor (advanced arrays) to avoid all that contains a gradient
# We want to put the tensor into a varaible taht will also contain a
# gradient and to this we need:
from torch.autograd import Variable
# to convert this tensor into a variable containing the tensor and the gradient
# Creating the architecture of the Neural Network
class Network(nn.Module): #inherinting from nn.Module
#Self - refers to the object that will be created from this class
# - self here to specify that we're referring to the object
def __init__(self, input_size, nb_action): #[self,input neuroner, output neuroner]
super(Network, self).__init__() #inorder to use modules in torch.nn
# Input and output neurons
self.input_size = input_size
self.nb_action = nb_action
# Full connection between different layers of NN
# In this example its one input layer, one hidden layer and one output layer
# Using self here to specify that fc1 is a variable of my object
self.fc1 = nn.Linear(input_size, 40)
self.fc2 = nn.Linear(40, 30)
#Example of adding a hiddenlayer
# self.fcX = nn.Linear(30,30)
self.fc3 = nn.Linear(30, nb_action) # 30 neurons in hidden layer
# For function that will activate neurons and perform forward propagation
def forward(self, state):
# rectifier function
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
q_values = self.fc3(x)
return q_values
# Implementing Experience Replay
# We know that RL is based on MDP
# So going from one state(s_t) to the next state(s_t+1)
# We gonna put 100 transition between state into what we call the memory
# So we can use the distribution of experience to make a decision
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity #100 transitions
self.memory = [] #memory to save transitions
# pushing transitions into memory with append
#event=transition
def push(self, event):
self.memory.append(event)
if len(self.memory) > self.capacity: #memory only contain 100 events
del self.memory[0] #delete first transition from memory if there is more that 100
# taking random sample
def sample(self, batch_size):
#Creating variable that will contain the samples of memory
#zip =reshape function if list = ((1,2,3),(4,5,6)) zip(*list)= (1,4),(2,5),(3,6)
# (state,action,reward),(state,action,reward)
samples = zip(*random.sample(self.memory, batch_size))
#This is to be able to differentiate with respect to a tensor
#and this will then contain the tensor and gradient
#so for state,action and reward we will store the seperately into some
#bytes which each one will get a gradient
#so that eventually we'll be able to differentiate each one of them
return map(lambda x: Variable(torch.cat(x, 0)), samples)
# Implementing Deep Q Learning
class Dqn():
def __init__(self, input_size, nb_action, gamma, lrate, T):
self.gamma = gamma #self.gamma gets assigned to input argument
self.T = T
# Sliding window of the evolving mean of the last 100 events/transitions
self.reward_window = []
#Creating network with network class
self.model = Network(input_size, nb_action)
#creating memory with memory class
#We gonna take 100000 samples into memory and then we will sample from this memory to
#to get a snakk number of random transitions
self.memory = ReplayMemory(100000)
#creating optimizer (stochastic gradient descent)
self.optimizer = optim.Adam(self.model.parameters(), lr = lrate) #learning rate
#input vector which is batch of input observations
#by unsqeeze we create a fake dimension to this is
#what the network expect for its inputs
#have to be the first dimension of the last_state
self.last_state = torch.Tensor(input_size).unsqueeze(0)
#Inilizing
self.last_action = 0
self.last_reward = 0
def select_action(self, state):
#Q value depends on state
#Temperature parameter T will be a positive number and the closer
#it is to ze the less sure the NN will when taking an action
#forexample
#softmax((1,2,3))={0.04,0.11,0.85} ==> softmax((1,2,3)*3)={0,0.02,0.98}
#to deactivate brain then set T=0, thereby it is full random
probs = F.softmax((self.model(Variable(state, volatile = True))*self.T),dim=1) # T=100
#create a random draw from the probability distribution created from softmax
action = probs.multinomial()
print(probs.multinomial())
return action.data[0,0]
# See section 5.3 in AI handbook
def learn(self, batch_state, batch_next_state, batch_reward, batch_action):
outputs = self.model(batch_state).gather(1, batch_action.unsqueeze(1)).squeeze(1)
#next input for target see page 7 in attached AI handbook
next_outputs = self.model(batch_next_state).detach().max(1)[0]
target = self.gamma*next_outputs + batch_reward
#Using hubble loss inorder to obtain loss
td_loss = F.smooth_l1_loss(outputs, target)
#using lass loss/error to perform stochastic gradient descent and update weights
self.optimizer.zero_grad() #reintialize the optimizer at each iteration of the loop
#This line of code that backward propagates the error into the NN
#td_loss.backward(retain_variables = True) #userwarning
td_loss.backward(retain_graph = True)
#And this line of code uses the optimizer to update the weights
self.optimizer.step()
def update(self, reward, new_signal):
#Updated one transition and we have dated the last element of the transition
#which is the new state
new_state = torch.Tensor(new_signal).float().unsqueeze(0)
self.memory.push((self.last_state, new_state, torch.LongTensor([int(self.last_action)]), torch.Tensor([self.last_reward])))
#After ending in a state its time to play a action
action = self.select_action(new_state)
if len(self.memory.memory) > 100:
batch_state, batch_next_state, batch_action, batch_reward = self.memory.sample(100)
self.learn(batch_state, batch_next_state, batch_reward, batch_action)
self.last_action = action
self.last_state = new_state
self.last_reward = reward
self.reward_window.append(reward)
if len(self.reward_window) > 1000:
del self.reward_window[0]
return action
def score(self):
return sum(self.reward_window)/(len(self.reward_window)+1.)
def save(self):
torch.save({'state_dict': self.model.state_dict(),
'optimizer' : self.optimizer.state_dict(),
}, 'last_brain.pth')
def load(self):
if os.path.isfile('last_brain.pth'):
print("=> loading checkpoint... ")
checkpoint = torch.load('last_brain.pth')
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
print("done !")
else:
print("no checkpoint found...")
I hope there is someone out there that can help me and could implement a RNN and a LSTM layer into my code! I believe in you stackflow!
Best regards Søren Koch
From my point of view, I think you could add RNN, LSTM layer to the Network#__init__,Network#forward; shape of data should be reshaped into sequences...
For more detail, I think you should read these two following articles; after that implementing RNN, LSTM not hard as it seem to be.
http://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html#sphx-glr-beginner-nlp-sequence-models-tutorial-py
http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html