Efficiently calculate top-k elements in spark - apache-spark

I have a dataframe similarly to:
+---+-----+-----+
|key|thing|value|
+---+-----+-----+
| u1| foo| 1|
| u1| foo| 2|
| u1| bar| 10|
| u2| foo| 10|
| u2| foo| 2|
| u2| bar| 10|
+---+-----+-----+
And want to get a result of:
+---+-----+---------+----+
|key|thing|sum_value|rank|
+---+-----+---------+----+
| u1| bar| 10| 1|
| u1| foo| 3| 2|
| u2| foo| 12| 1|
| u2| bar| 10| 2|
+---+-----+---------+----+
Currently, there is code similarly to:
val df = Seq(("u1", "foo", 1), ("u1", "foo", 2), ("u1", "bar", 10), ("u2", "foo", 10), ("u2", "foo", 2), ("u2", "bar", 10)).toDF("key", "thing", "value")
// calculate sums per key and thing
val aggregated = df.groupBy("key", "thing").agg(sum("value").alias("sum_value"))
// get topk items per key
val k = lit(10)
val topk = aggregated.withColumn("rank", rank over Window.partitionBy("key").orderBy(desc("sum_value"))).filter('rank < k)
However, this code is very inefficient. A window function generates a total order of items and causes a gigantic shuffle.
How can I calculate top-k items more efficiently?
Maybe using approximate functions i.e. sketches similarly to https://datasketches.github.io/ or https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html

This is a classical algorithm of recommender systems.
case class Rating(thing: String, value: Int) extends Ordered[Rating] {
def compare(that: Rating): Int = -this.value.compare(that.value)
}
case class Recommendation(key: Int, ratings: Seq[Rating]) {
def keep(n: Int) = this.copy(ratings = ratings.sorted.take(n))
}
val TOPK = 10
df.groupBy('key)
.agg(collect_list(struct('thing, 'value)) as "ratings")
.as[Recommendation]
.map(_.keep(TOPK))
You can also check the source code at:
Spotify Big Data Rosetta Code / TopItemsPerUser.scala, several solutions here for Spark or Scio
Spark MLLib / TopByKeyAggregator.scala, considered the best practice when using their recommendation algorithm, it looks like their examples still uses RDD though.
import org.apache.spark.mllib.rdd.MLPairRDDFunctions._
sc.parallelize(Array(("u1", ("foo", 1)), ("u1", ("foo", 2)), ("u1", ("bar", 10)), ("u2", ("foo", 10)),
("u2", ("foo", 2)), ("u2", ("bar", 10))))
.topByKey(10)(Ordering.by(_._2))

RDD`s to the rescue
aggregated.as[(String, String, Long)].rdd.groupBy(_._1).map{ case (thing, it) => (thing, it.map(e=> (e._2, e._3)).toList.sortBy(sorter => sorter._2).take(1))}.toDF.show
+---+----------+
| _1| _2|
+---+----------+
| u1| [[foo,3]]|
| u2|[[bar,10]]|
+---+----------+
This can most likely be improved using the suggestion from the comment. I.e. when not starting out from aggregated, but rather df. This could look similar to:
df.as[(String, String, Long)].rdd.groupBy(_._1).map{case (thing, it) => {
val aggregatedInner = it.groupBy(e=> (e._2)).mapValues(events=> events.map(value => value._3).sum)
val topk = aggregatedInner.toArray.sortBy(sorter=> sorter._2).take(1)
(thing, topk)
}}.toDF.show

Related

spark dynamically create struct/json per group

I have a spark dataframe like
+-----+---+---+---+------+
|group| a| b| c|config|
+-----+---+---+---+------+
| a| 1| 2| 3| [a]|
| b| 2| 3| 4|[a, b]|
+-----+---+---+---+------+
val df = Seq(("a", 1, 2, 3, Seq("a")),("b", 2, 3,4, Seq("a", "b"))).toDF("group", "a", "b","c", "config")
How can I add an additional column i.e.
df.withColumn("select_by_config", <<>>).show
as a struct or JSON which combines a number of columns (specified by config) in something similar to a hive named struct / spark struct / json column? Note, this struct is specific per group and not constant for the whole dataframe; it is specified in config column.
I can imagine that a df.map could do the trick, but the serialization overhead does not seem to be efficient. How can this be achieved via SQL only expressions? Maybe as a Map-type column?
edit
a possible but really clumsy solution for 2.2 is:
val df = Seq((1,"a", 1, 2, 3, Seq("a")),(2, "b", 2, 3,4, Seq("a", "b"))).toDF("id", "group", "a", "b","c", "config")
df.show
import spark.implicits._
final case class Foo(id:Int, c1:Int, specific:Map[String, Int])
df.map(r => {
val config = r.getAs[Seq[String]]("config")
print(config)
val others = config.map(elem => (elem, r.getAs[Int](elem))).toMap
Foo(r.getAs[Int]("id"), r.getAs[Int]("c"), others)
}).show
are there any better ways to solve the problem for 2.2?
If you use a recent build (Spark 2.4.0 RC 1 or later) a combination of higher order functions should do the trick. Create a map of columns:
import org.apache.spark.sql.functions.{
array, col, expr, lit, map_from_arrays, map_from_entries
}
val cols = Seq("a", "b", "c")
val dfm = df.withColumn(
"cmap",
map_from_arrays(array(cols map lit: _*), array(cols map col: _*))
)
and transform the config:
dfm.withColumn(
"config_mapped",
map_from_entries(expr("transform(config, k -> struct(k, cmap[k]))"))
).show
// +-----+---+---+---+------+--------------------+----------------+
// |group| a| b| c|config| cmap| config_mapped|
// +-----+---+---+---+------+--------------------+----------------+
// | a| 1| 2| 3| [a]|[a -> 1, b -> 2, ...| [a -> 1]|
// | b| 2| 3| 4|[a, b]|[a -> 2, b -> 3, ...|[a -> 2, b -> 3]|
// +-----+---+---+---+------+--------------------+----------------+

Issue with adding Column to a DataFrame

Below code fails with AnalysisException: sc.version String = 1.6.0
case class Person(name: String, age: Long)
val caseClassDF = Seq(Person("Andy", 32)).toDF()
caseClassDF.count()
val seq = Seq(1)
val rdd = sqlContext.sparkContext.parallelize(seq)
val df2 = rdd.toDF("Counts")
df2.count()
val withCounts = caseClassDF.withColumn("duration", df2("Counts"))
For some reason, it works with UDF:
import org.apache.spark.sql.functions.udf
case class Person(name: String, age: Long, day: Int)
val caseClassDF = Seq(Person("Andy", 32, 1), Person("Raman", 22, 1), Person("Rajan", 40, 1), Person("Andy", 42, 2), Person("Raman", 42, 2), Person("Rajan", 50, 2)).toDF()
val calculateCounts= udf((x: Long, y: Int) =>
x+y)
val df1 = caseClassDF.withColumn("Counts", calculateCounts($"age", $"day"))
df1.show
+-----+---+---+------+
| name|age|day|Counts|
+-----+---+---+------+
| Andy| 32| 1| 33|
|Raman| 22| 1| 23|
|Rajan| 40| 1| 41|
| Andy| 42| 2| 44|
|Raman| 42| 2| 44|
|Rajan| 50| 2| 52|
+-----+---+---+------+
caseClassDF.withColumn("duration", df2("Counts")), Here the column should be of the same dataframe (in your case caseClassDF). AFAIK, Spark does not allow column of a different DataFrame in withColumn.
PS: I am a user of Spark 1.6.x, not sure whether this has come up in Spark 2.x

Aggregate First Grouped Item from Subsequent Items

I have user game sessions containing: user id, game id, score and a timestamp when the game was played.
from pyspark import SparkContext
from pyspark.sql import HiveContext
from pyspark.sql import functions as F
sc = SparkContext("local")
sqlContext = HiveContext(sc)
df = sqlContext.createDataFrame([
("u1", "g1", 10, 0),
("u1", "g3", 2, 2),
("u1", "g3", 5, 3),
("u1", "g4", 5, 4),
("u2", "g2", 1, 1),
], ["UserID", "GameID", "Score", "Time"])
Desired Output
+------+-------------+-------------+
|UserID|MaxScoreGame1|MaxScoreGame2|
+------+-------------+-------------+
| u1| 10| 5|
| u2| 1| null|
+------+-------------+-------------+
I want to transform the data such that I get the max score of the first game the user played as well as the max score of the second game (bonus if I can also get the max score of all subsequent games). Unfortunately I'm not sure how that's possible to do with Spark SQL.
I know I can group by UserID, GameID and then agg to get the max score and min time. Not sure to how to proceed from there.
Clarification: note that MaxScoreGame1 and MaxScoreGame2 refer to the first and second game user player; not the GameID.
You could try using a combination of Window functions and Pivot.
Get the row number for every game partitioned by UserID ordered by Time.
Filter down to GameNumber being 1 or 2.
Pivot on that to get your desired output shape.
Unfortunately I am using scala not python, but the below should be fairly easily transferable to python library.
import org.apache.spark.sql.expressions.Window
// Use a window function to get row number
val rowNumberWindow = Window.partitionBy(col("UserId")).orderBy(col("Time"))
val output = {
df
.select(
col("*"),
row_number().over(rowNumberWindow).alias("GameNumber")
)
.filter(col("GameNumber") <= lit(2))
.groupBy(col("UserId"))
.pivot("GameNumber")
.agg(
sum(col("Score"))
)
}
output.show()
+------+---+----+
|UserId| 1| 2|
+------+---+----+
| u1| 10| 2|
| u2| 1|null|
+------+---+----+
Solution with PySpark:
from pyspark.sql import Window
rowNumberWindow = Window.partitionBy("UserID").orderBy(F.col("Time"))
(df
.groupBy("UserID", "GameID")
.agg(F.max("Score").alias("Score"),
F.min("Time").alias("Time"))
.select(F.col("*"),
F.row_number().over(rowNumberWindow).alias("GameNumber"))
.filter(F.col("GameNumber") <= F.lit(2))
.withColumn("GameMaxScoreCol", F.concat(F.lit("MaxScoreGame"), F.col("GameNumber")))
.groupBy("UserID")
.pivot("GameMaxScoreCol")
.agg(F.max("Score"))
).show()
+------+-------------+-------------+
|UserID|MaxScoreGame1|MaxScoreGame2|
+------+-------------+-------------+
| u1| 10| 5|
| u2| 1| null|
+------+-------------+-------------+

How to aggregate one hot encoded values in pipeline?

I am able to use string indexers and one hot encoders to create the features column on the far right. Notice how id 1 has multiple rows. I was wondering how to aggregate the sparse vector in features using a pipeline
or some other alternative so that the feature for id 1 = (7,[0,3,5],[1.0,1.0,1.0]).
I want to take this input:
+---+------+----+-----+
| id|houses|cars|label|
+---+------+----+-----+
| 0| M| A| 1.0|
| 1| M| C| 1.0|
| 1| M| B| 1.0|
| 2| F| A| 0.0|
| 3| F| D| 0.0|
| 4| Z| B| 1.0|
| 5| Z| C| 0.0|
+---+------+----+-----+
then one hot encode the houses column, the cars column, combine them and aggregate by id
and generate this output:
+-------------------+
| features|
+-------------------+
|(7,[0,4],[1.0,1.0])|
|(7,[0,3,5],[1.0,1.0,1.0])|
|(7,[2,4],[1.0,1.0])|
|(7,[2,6],[1.0,1.0])|
|(7,[1,3],[1.0,1.0])|
|(7,[1,5],[1.0,1.0])|
+-------------------+
def oneHotEncoderExample(sqlContext: SQLContext): Unit = {
// define data
val df = sqlContext.createDataFrame(Seq(
(0, "M", "A", 1.0),
(1, "M", "C", 1.0),
(1, "M", "B", 1.0),
(2, "F", "A", 0.0),
(3, "F", "D", 0.0),
(4, "Z", "B", 1.0),
(5, "Z", "C", 0.0)
)).toDF("id", "houses", "cars", "label")
df.show()
// define stages of pipeline
val indexerHouse = new StringIndexer()
.setInputCol("houses")
.setOutputCol("housesIndex")
val encoderHouse = new OneHotEncoder()
.setDropLast(false)
.setInputCol("housesIndex")
.setOutputCol("typeHouses")
val indexerCar = new StringIndexer()
.setInputCol("cars")
.setOutputCol("carsIndex")
val encoderCar = new OneHotEncoder()
.setDropLast(false)
.setInputCol("carsIndex")
.setOutputCol("typeCars")
val assembler = new VectorAssembler()
.setInputCols(Array("typeHouses", "typeCars"))
.setOutputCol("features")
val lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.01)
// define pipeline
val pipeline = new Pipeline()
.setStages(Array(
indexerHouse, encoderHouse,
indexerCar, encoderCar,
assembler, lr))
// Fit the pipeline to training documents.
val pipelineModel = pipeline.fit(df)
}
// helper code to simulate and aggregate current pipeline (generates table below)
val indexedHouse = indexerHouse.fit(df).transform(df)
indexedHouse.show()
val encodedHouse = encoderHouse.transform(indexedHouse)
encodedHouse.show()
val indexedCar = indexerCar.fit(df).transform(df)
indexedCar.show()
val encodedCar = encoderCar.transform(indexedCar)
encodedCar.show()
val assembledFeature = assembler.transform(encodedHouse.join(encodedCar, usingColumns = Seq("id", "houses", "cars")))
assembledFeature.show()

An error about Dataset.filter in Spark SQL

I want to filter the dataset only to contain the record which can be found in MySQL.
Here is the Dataset:
dataset.show()
+---+-----+
| id| name|
+---+-----+
| 1| a|
| 2| b|
| 3| c|
+---+-----+
And here is the table in MySQL:
+---+-----+
| id| name|
+---+-----+
| 1| a|
| 3| c|
| 4| d|
+---+-----+
This is my code (running in spark-shell):
import java.util.Properties
case class App(id: Int, name: String)
val data = sc.parallelize(Array((1, "a"), (2, "b"), (3, "c")))
val dataFrame = data.map { case (id, name) => App(id, name) }.toDF
val dataset = dataFrame.as[App]
val url = "jdbc:mysql://ip:port/tbl_name"
val table = "my_tbl_name"
val user = "my_user_name"
val password = "my_password"
val properties = new Properties()
properties.setProperty("user", user)
properties.setProperty("password", password)
dataset.filter((x: App) =>
0 != sqlContext.read.jdbc(url, table, Array("id = " + x.id.toString), properties).count).show()
But I get "java.lang.NullPointerException"
at org.apache.spark.sql.SQLConf.getConf(SQLConf.scala:638)
at org.apache.spark.sql.SQLConf.defaultDataSourceName(SQLConf.scala:558)
at org.apache.spark.sql.DataFrameReader.<init>(DataFrameReader.scala:362)
at org.apache.spark.sql.SQLContext.read(SQLContext.scala:623)
I have tested
val x = App(1, "aa")
sqlContext.read.jdbc(url, table, Array("id = " + x.id.toString), properties).count
val y = App(5, "aa")
sqlContext.read.jdbc(url, table, Array("id = " + y.id.toString), properties).count
and I can get the right result 1 and 0.
What's the problem with filter?
What's the problem with filter?
You get an exception because you're trying to execute an action (count on a DataFrame) inside a transformation (filter). Neither nested actions nor transformations are supported in Spark.
Correct solution is as usual either join on compatible data structures, lookup using local data structure or query directly against external system (without using Spark data structures).

Resources