How to code softmax function using Python on tensorflow graph - python-3.x

I want to program the softmax function from scratch using Python on tensorflow mood.
def sigmoid(p):
return tf.cond(p >= 0, lambda: 1 / (1 + tf.exp(-p)), \
lambda: tf.exp(p) / (1 + tf.exp(p)))
While running this code chunk, I got this traceback:
InvalidArgumentError: Shape must be rank 0 but is rank 2 for 'cond/Switch' (op: 'Switch') with input shapes: [?,256], [?,256].
Here's my reproducible code:
# 1st hidden layer
W1 = tf.get_variable("W1", shape=(784, 256), dtype=tf.float32, initializer = tf.contrib.layers.xavier_initializer())
b1 = tf.get_variable("b1", shape=(256), dtype=tf.float32, initializer = tf.zeros_initializer)
# 2nd hidden layer
W2 = tf.get_variable("W2", shape=(256, 10), dtype=tf.float32, initializer = tf.contrib.layers.xavier_initializer())
b2 = tf.get_variable("b2", shape=(10), dtype=tf.float32, initializer = tf.zeros_initializer)
def sigmoid(z):
"""Numerically stable sigmoid function."""
return tf.where(z >= 0, 1 / (1 + tf.exp(-z)), tf.exp(z) / (1 + tf.exp(z)))
### Compute predictions
logits = X # W1 + b1
probas = sigmoid(logits)
y_pred = probas # W2 + b2
def softmax(z): ## this approach provides numerical stability
"""Compute softmax values for each sets of scores in z."""
e = tf.exp(z - tf.reduce_max(z))
return e / tf.reduce_sum(e)
### Cross-Entropy loss
cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(softmax(y_pred)), reduction_indices=[1]))
lr = 0.01
optimizer = tf.train.AdamOptimizer(lr)
step = optimizer.minimize(cost) #
This gives me a very bad score with BATCH_SIZE = 512 and EPOCHS= 55
Test cost after 10 epochs: 6.3319
Test cost after 30 epochs: 6.2753
Test cost after 50 epochs: nan
OPTIMIZATION IS DONE!
Score = 0.098982

Related

multiple layer perceptron to classify mnist dataset

I need some help for a project I am working on for a data science course. In this project I classy the digits of the MNIST datasets in three ways:
using the dissimilarity matrices induced by the distances 1,2 and infinity
using a BallTree
using a neural network.
The first two parts are done, but I getting an error for the neural network code that I can't solve. This is the code.
#Upload the MNIST dataset
data = load('mnist.npz')
x_train = data['arr_0']
y_train = data['arr_1']
x_test = data['arr_2']
y_test = data['arr_3']
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
The output is
(60000, 28, 28) (60000,)
(10000, 28, 28) (10000,)
Then,
#Setting up the neural network and defining sigmoid function
#self.mtrx holds the neurons in each level
#self.weight, bias, grad hold weight, bias and gradient values between level L and L - 1
​
class NeuralNetwork:
​
def __init__(self, rows, columns=0):
self.mtrx = np.zeros((rows, 1))
self.weight = np.random.random((rows, columns)) / columns ** .5
self.bias = np.random.random((rows, 1)) * -1.0
self.grad = np.zeros((rows, columns))
​
def sigmoid(self):
return 1 / (1 + np.exp(-self.mtrx))
​
def sigmoid_derivative(self):
return self.sigmoid() * (1.0 - self.sigmoid())
#Initializing neural network levels
​
lvl_input = NeuralNetwork(784)
lvl_one = NeuralNetwork(200, 784)
lvl_two = NeuralNetwork(200, 200)
lvl_output = NeuralNetwork(10, 200)
#Forward and backward propagation functions
​
def forward_prop():
lvl_one.mtrx = lvl_one.weight.dot(lvl_input.mtrx) + lvl_one.bias
lvl_two.mtrx = lvl_two.weight.dot(lvl_one.sigmoid()) + lvl_two.bias
lvl_output.mtrx = lvl_output.weight.dot(lvl_two.sigmoid()) + lvl_output.bias
​
​
def back_prop(actual):
val = np.zeros((10, 1))
val[actual] = 1
​
delta_3 = (lvl_output.sigmoid() - val) * lvl_output.sigmoid_derivative()
delta_2 = np.dot(lvl_output.weight.transpose(), delta_3) * lvl_two.sigmoid_derivative()
delta_1 = np.dot(lvl_two.weight.transpose(), delta_2) * lvl_one.sigmoid_derivative()
​
lvl_output.grad = lvl_two.sigmoid().transpose() * delta_3
lvl_two.grad = lvl_one.sigmoid().transpose() * delta_2
lvl_one.grad = lvl_input.sigmoid().transpose() * delta_1
#Storing mnist data into np.array
​
def make_image(c):
lvl_input.mtrx = x_train[c]
#Evaluating cost function
​
def cost(actual):
val = np.zeros((10, 1))
val[actual] = 1
cost_val = (lvl_output.sigmoid() - val) ** 2
return np.sum(cost_val)
#Subtraction gradients from weights and initializing learning rate
​
learning_rate = .01
​
def update():
lvl_output.weight -= learning_rate * lvl_output.grad
lvl_two.weight -= learning_rate * lvl_two.grad
lvl_one.weight -= learning_rate * lvl_one.grad
And finally I train the neural network.
#Training neural network
#iter_1 equals number of batches
#iter_2 equals number of iterations in one batch
iter_1 = 50
iter_2 = 100
for batch_num in range(iter_1):
update()
counter=0
for batches in range(iter_2):
make_image(counter)
num = np.argmax(y_train[counter])
counter += 1
forward_prop()
back_prop(num)
print("actual: ", num, " guess: ", np.argmax(lvl_output.mtrx), " cost", cost(num))
I get the following error and I can't figure out what's wrong with my code.. can anybody help?
ValueError Traceback (most recent call last)
<ipython-input-12-8821054ddd29> in <module>
13 num = np.argmax(y_train[counter])
14 counter += 1
---> 15 forward_prop()
16 back_prop(num)
17 print("actual: ", num, " guess: ", np.argmax(lvl_output.mtrx), " cost", cost(num))
<ipython-input-6-e6875bcd1a03> in forward_prop()
2
3 def forward_prop():
----> 4 lvl_one.mtrx = lvl_one.weight.dot(lvl_input.mtrx) + lvl_one.bias
5 lvl_two.mtrx = lvl_two.weight.dot(lvl_one.sigmoid()) + lvl_two.bias
6 lvl_output.mtrx = lvl_output.weight.dot(lvl_two.sigmoid()) + lvl_output.bias
ValueError: shapes (200,784) and (28,28) not aligned: 784 (dim 1) != 28 (dim 0)
In your code:
def make_image(c):
lvl_input.mtrx = x_train[c]
althout you init lvl_input.mtrx with shape (row, 1), data with shape(28,28) then assign to lvl_input.mtrx later. Basically reshape() need to be done to training data

Why am I getting the error ValueError: Expected input batch_size (4) to match target batch_size (64)?

Why am I getting the error ValueError: Expected input batch_size (4) to match target batch_size (64)?
Is it something to do with an incorrect number of channels(?) in the first linear layer? In this example I have 128 *4 *4 as the channel.
I have tried looking online and on this site for the answer but I have not been able to find it. So, I asked here.
Here is the network:
class Net(nn.Module):
"""A representation of a convolutional neural network comprised of VGG blocks."""
def __init__(self, n_channels):
super(Net, self).__init__()
# VGG block 1
self.conv1 = nn.Conv2d(n_channels, 64, (3,3))
self.act1 = nn.ReLU()
self.pool1 = nn.MaxPool2d((2,2), stride=(2,2))
# VGG block 2
self.conv2 = nn.Conv2d(64, 64, (3,3))
self.act2 = nn.ReLU()
self.pool2 = nn.MaxPool2d((2,2), stride=(2,2))
# VGG block 3
self.conv3 = nn.Conv2d(64, 128, (3,3))
self.act3 = nn.ReLU()
self.pool3 = nn.MaxPool2d((2,2), stride=(2,2))
# Fully connected layer
self.f1 = nn.Linear(128 * 4 * 4, 1000)
self.act4 = nn.ReLU()
# Output layer
self.f2 = nn.Linear(1000, 10)
self.act5 = nn.Softmax(dim=1)
def forward(self, X):
"""This function forward propagates the input."""
# VGG block 1
X = self.conv1(X)
X = self.act1(X)
X = self.pool1(X)
# VGG block 2
X = self.conv2(X)
X = self.act2(X)
X = self.pool2(X)
# VGG block 3
X = self.conv3(X)
X = self.act3(X)
X = self.pool3(X)
# Flatten
X = X.view(-1, 128 * 4 * 4)
# Fully connected layer
X = self.f1(X)
X = self.act4(X)
# Output layer
X = self.f2(X)
X = self.act5(X)
return X
Here is the training loop:
def training_loop(
n_epochs,
optimizer,
model,
loss_fn,
train_loader):
for epoch in range(1, n_epochs + 1):
loss_train = 0.0
for i, (imgs, labels) in enumerate(train_loader):
outputs = model(imgs)
loss = loss_fn(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_train += loss.item()
if epoch == 1 or epoch % 10 == 0:
print('{} Epoch {}, Training loss {}'.format(
datetime.datetime.now(),
epoch,
loss_train / len(train_loader)))
As nerveless_child said, your dimensions are off!
For the other folks who are reviewing / studying Neural Networks, more generally, you can calculate the output dimension of a single convolutional layer by
[(W−K+2P)/S]+1
where
W is the input volume - in your case you have not given us this
K is the Kernel size - in your case 2 == "filter"
P is the padding - in your case 2
S is the stride - in your case 3
Another, prettier formulation:
That's because you're getting the dimensions wrong. From the error and your comment, I take it that your input is of the shape (64, 1, 28, 28).
Now, the shape of X at X = self.pool3(X) is (64, 128, 1, 1), which you then reshaped on the next line to (4, 128 * 4 * 4).
Long story short, the output of your model is (4, 10) i.e batch_size (4), which you're comparing on this line loss = loss_fn(outputs, labels) with a tensor of batch_size (64) as the error said.
I don't know what you're trying to do but I'm guessing that you'd want to change this line self.f1 = nn.Linear(128 * 4 * 4, 1000) to this self.f1 = nn.Linear(128 * 1 * 1, 1000)

Keras multiply parallel layers' outputs with constrained weigths

I have 3 parallel MLPs and want to obtain the following in Keras:
Out = W1 * Out_MLP1 + W2 * Out_MLP2 + W3 * Out_MLP3
where Out_MLPs are output layer of each MLP and have dimension of (10,) and W1, W2 and W3 are three trainable weights (floats) where they satisfy the following condition:
W1 + W2 + W3 = 1
What is the best way to implement this with Keras functional API? What if we had N parallel layers?
what you need is to apply a softmax on a set of learnable weights, in order to grant that they sum up to 1.
We initialize our learnable weights in a custom layer. this layer receives the output of our MLPs and combines them following our logic W1 * Out_MLP1 + W2 * Out_MLP2 + W3 * Out_MLP3. the output will be a tensor of shape (10,).
class W_ADD(Layer):
def __init__(self, n_output):
super(W_ADD, self).__init__()
self.W = tf.Variable(initial_value=tf.random.uniform(shape=[1,1,n_output], minval=0, maxval=1),
trainable=True) # (1,1,n_inputs)
def call(self, inputs):
# inputs is a list of tensor of shape [(n_batch, n_feat), ..., (n_batch, n_feat)]
# expand last dim of each input passed [(n_batch, n_feat, 1), ..., (n_batch, n_feat, 1)]
inputs = [tf.expand_dims(i, -1) for i in inputs]
inputs = Concatenate(axis=-1)(inputs) # (n_batch, n_feat, n_inputs)
weights = tf.nn.softmax(self.W, axis=-1) # (1,1,n_inputs)
# weights sum up to one on last dim
return tf.reduce_sum(weights*inputs, axis=-1) # (n_batch, n_feat)
in this dummy example, I create a network that has 3 parallel MLPs
inp1 = Input((100))
inp2 = Input((100))
inp3 = Input((100))
x1 = Dense(32, activation='relu')(inp1)
x2 = Dense(32, activation='relu')(inp2)
x3 = Dense(32, activation='relu')(inp3)
x1 = Dense(10, activation='linear')(x1)
x2 = Dense(10, activation='linear')(x2)
x3 = Dense(10, activation='linear')(x3)
mlp_outputs = [x1,x2,x3]
out = W_ADD(n_output=len(mlp_outputs))(mlp_outputs)
m = Model([inp1,inp2,inp3], out)
m.compile('adam','mse')
X1 = np.random.uniform(0,1, (1000,100))
X2 = np.random.uniform(0,1, (1000,100))
X3 = np.random.uniform(0,1, (1000,100))
y = np.random.uniform(0,1, (1000,10))
m.fit([X1,X2,X3], y, epochs=10)
as you can see this is easily generalizable in case of N parallel layers

3-layer feedfoward neural network not predicting regression values accurately

I'm pretty new to Tensorflow. Currently, I'm doing a 3-layer network, with 10 neurons in the hidden layer with ReLU, mini-batch gradient descent size of 8, L2 regularisation weight decay parameter (beta) of 0.001. The Tensorflow version I'm using is 1.14 and I'm on Python 3.6.
The issue that boggles my mind is that my predicted values and testing errors are absolutely off the charts.
For example, I plotted out the test errors and the predicted vs target values for a sample size of 50, and this is what came out.
As you can see, both plots are way off, and I haven't had the slightest clue as to why.
Here's how the dataset roughly looks like. The first column is discarded as it is just a counter value, and the last column is the target.
My code:
NUM_FEATURES = 7
num_neuron = 10
batch_size = 8
beta = 0.001
learning_rate = 0.001
epochs = 4000
seed = 10
np.random.seed(seed)
# read and divide data into test and train sets
total_dataset= np.genfromtxt('dataset_excel.csv', delimiter=',')
X_data, Y_data = total_dataset[1:, 1:8], total_dataset[1:, -1]
Y_data = Y_data.reshape(Y_data.shape[0], 1)
# shuffle input, ensure both are shuffled with the same order
shufflestate = np.random.get_state()
np.random.shuffle(X_data)
np.random.set_state(shufflestate)
np.random.shuffle(Y_data)
# 70% used for training, 30% used for testing
trainX = X_data[:280]
trainY = Y_data[:280]
testX = X_data[280:]
testY = Y_data[280:]
trainX = (trainX - np.mean(trainX, axis=0)) / np.std(trainX, axis=0)
# Create the model
x = tf.placeholder(tf.float32, [None, NUM_FEATURES])
y_ = tf.placeholder(tf.float32, [None, 1])
# get 50 samples for plotting of predicted vs target values
limited50testX = testX[:50]
limited50testY = testY[:50]
# Hidden
with tf.name_scope('hidden'):
weight1 = tf.Variable(tf.truncated_normal([NUM_FEATURES, num_neuron],stddev=1.0,name='weight1'))
bias1 = tf.Variable(tf.zeros([num_neuron]),name='bias1')
hidden = tf.nn.relu(tf.matmul(x, weight1) + bias1)
# output
with tf.name_scope('linear'):
weight2 = tf.Variable(tf.truncated_normal([num_neuron, 1],stddev=1.0 / np.sqrt(float(num_neuron))),name='weight2')
bias2 = tf.Variable(tf.zeros([1]),name='bias2')
logits = tf.matmul(hidden, weight2) + bias2
ridgeLoss = tf.square(y_ - logits)
regularisation = tf.nn.l2_loss(weight1) + tf.nn.l2_loss(weight2)
loss = tf.reduce_mean(ridgeLoss + beta * regularisation)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss)
error = tf.reduce_mean(tf.square(y_ - logits))
N = len(trainX)
idx = np.arange(N)
predicted=[]
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
train_err = []
test_err_ = []
for i in range(epochs):
for batchStart, batchEnd in zip(range(0, trainX.shape[0], batch_size),range(batch_size, trainX.shape[0], batch_size)):
train_op.run(feed_dict={x: trainX[batchStart:batchEnd], y_: trainY[batchStart:batchEnd]})
err = error.eval(feed_dict={x: trainX, y_: trainY})
train_err.append(err)
if i % 100 == 0:
print('iter %d: train error %g' % (i, train_err[i]))
test_err = error.eval(feed_dict={x: testX, y_: testY})
test_err_.append(test_err)
predicted = sess.run(logits, feed_dict={x:limited50testX})
print("predicted values: ", predicted)
print("size of predicted values is", len(predicted))
print("targets: ", limited50testY)
print("size of target values is", len(limited50testY))
#plot predictions vs targets
numberList=np.arange(0, 50, 1).tolist()
predplot = plt.figure(1)
plt.plot(numberList, predicted, label='Predictions')
plt.plot(numberList, limited50testY, label='Targets')
plt.xlabel('50 samples')
plt.ylabel('Value')
plt.legend(loc='lower right')
predplot.show()
# plot training error
trainplot = plt.figure(2)
plt.plot(range(epochs), train_err)
plt.xlabel(str(epochs) + ' iterations')
plt.ylabel('Train Error')
trainplot.show()
#plot testing error
testplot = plt.figure(3)
plt.plot(range(epochs), test_err_)
plt.xlabel(str(epochs) + ' iterations')
plt.ylabel('Test Error')
testplot.show()
Not sure if that's it, but trainX is normalized whereas testX is not. You might want to use the same normalization on testX before predicting.

Convergence issues in 2D RBF Neuron implemented as a Keras layer

We implemented a 2D Gaussian radial basis layer (RBF) in Keras and are running into convergence issues with batch sizes larger than 1. The Neuron should implement the following function:
f(x,y)=exp(-a((x-x_0)²+(y-y_0)²)
Here x_0, y_0 and a are fit parameters.
Testcase
Currently we are doing correctness tests and are trying to fit just a single Neuron on the 2D function above. The Neuron should be (and is in case of batch_size 1) able to approximate this function exactly. The optimal loss is 0.
Problem
If we choose a batch size of 1 in this code, the prediction with Keras will converge very often and will be nearly independent of the starting parameters.
If we increase the batch size, the fit might produce a random walk, freeze or not converge at all. In all of these cases (even batch_size 2) convergence is a lot worse than in the batch_size 1 case. If we choose the batch_size as the size of the trainingset (i.e. 1296, our desired batch size), the fit will freeze most of the time mostly independent of learning rate.
Code
We implemented this layer in the following code:
# 2D RBF Layer
# In case anybody wants to use this code afterwards:
# Licenses: Apache, MIT, BSD, LGPLv2 and v3 and Public Domain
# Input: x,y Pairs, shape: (2,)
# Output: exp(a* ((x-x_0)**2 + (y-y_0)**2)), shape: (1,)
# Parameters: x_0, y_0, a - called: mean_x, mean_y and opening in the following code:
# x and y should both lie in [0,1] - only [0,infinity] is enforced currently
class RBFLayer2D(Layer):
def __init__(self, **kwargs):
super(RBFLayer2D, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.mean_x = K.variable(0.35)
self.constraints[self.mean_x] = NonNeg()
self.mean_y = K.variable(0.35)
self.constraints[self.mean_y] = NonNeg()
self.opening = K.variable(2.0)
self.constraints[self.opening] = NonNeg()
self.trainable_weights = [self.mean_x,self.mean_y,self.opening]
super(RBFLayer2D, self).build(input_shape) # Be sure to call this somewhere!
def call(self, x):
x_m = x[:,0] - self.mean_x
y_m = x[:,1] - self.mean_y
out = x_m*x_m + y_m*y_m
outexp = 50.0*K.exp(-64.8*self.opening*out)
# Output: exp(-a* ((x-x_0)**2 + (y-y_0)**2))
return outexp
def compute_output_shape(self, input_shape):
# If Inputshape is (None, N) Outputshape is (None,N/2)
# In our example we only look at (None, 2), which outputs (None,1)
output_shape = (input_shape[0], input_shape[1]//2)
return output_shape
Reproduction
To reproduce set a batch_size of 1 in the (not-so) minimal example after this section. When you run it, the code will display the target distribution (a circle in the lower left corner), the starting guess for our RBF ANN (a smaller circler in the middle) and then after each iteration the current guess (a circle getting bigger and moving to the lower left corner).
Afterwards set a batch_size of 12 and restart the code and you will not observe convergence anymore.
Minimal Example
from __future__ import print_function
from __future__ import division
import numpy as np
np.random.seed(1234)
import matplotlib.pyplot as plt
from keras.engine import Layer
from keras.optimizers import SGD
from keras.models import Sequential
from keras.constraints import NonNeg
from keras import backend as K
# 2D RBF Layer
# Input: x,y Pairs, shape: (2,)
# Output: exp(a* ((x-x_0)**2 + (y-y_0)**2)), shape: (1,)
# Parameters: x_0, y_0, a - called: mean_x, mean_y and opening in the following code:
# x and y should both lie in [0,1] - only [0,infinity] is enforced currently
class RBFLayer2D(Layer):
def __init__(self, **kwargs):
super(RBFLayer2D, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.mean_x = K.variable(0.35)
self.constraints[self.mean_x] = NonNeg()
self.mean_y = K.variable(0.35)
self.constraints[self.mean_y] = NonNeg()
self.opening = K.variable(2.0)
self.constraints[self.opening] = NonNeg()
self.trainable_weights = [self.mean_x,self.mean_y,self.opening]
super(RBFLayer2D, self).build(input_shape)
def call(self, x):
x_m = x[:,0] - self.mean_x
y_m = x[:,1] - self.mean_y
out = x_m*x_m + y_m*y_m
outexp = 50.0*K.exp(-64.8*self.opening*out)
# Output: exp(-a* ((x-x_0)**2 + (y-y_0)**2))
return outexp
def compute_output_shape(self, input_shape):
# If Inputshape is (None, N) Outputshape is (None,N/2)
# In our example we only look at (None, 2), which outputs (None,1)
output_shape = (input_shape[0], input_shape[1]//2)
return output_shape
# The function we want to train.
# It can be exactly represented using a single Neuron.
def twodenergy(phi, psi):
r0 = np.array([-180, -180])
b = 0.00005
return 50.0 * np.exp(- b * ((phi - r0[0]) ** 2 + (psi - r0[1]) ** 2))
# One of two plotting helper functions to show the results
def make_plot(y,numsteps,numbins,minangle,maxangle,plotnum, batch_size):
evaluation = np.zeros((numsteps, numsteps))
for i in range(0, numbins):
mx = i % numsteps
my = int(i / numsteps)
evaluation[mx,my]=y[i]
plt.imshow(evaluation.T, origin='lower',extent=[minangle, maxangle, minangle, maxangle])
plt.xlabel("x")
plt.ylabel("y")
if plotnum == 0:
plt.title("Startconfiguration")
else:
plt.title("RBF for batch_size %i at frame %03d" % (batch_size, plotnum))
plt.show()
# One of two plotting helper functions to show the target function
def plot_target_function(phi, psi, minangle, maxangle, delta_angle_half, numbins, numsteps ):
eval_matrix_corr = np.zeros((numsteps, numsteps))
for i in range(0, numbins):
mx = i % numsteps
my = int(i / numsteps)
ph = phi[mx] +delta_angle_half
ps = psi[my] +delta_angle_half
eval_matrix_corr[mx,my] = twodenergy(ph,ps)
plt.imshow(eval_matrix_corr.T, origin='lower', extent=[minangle, maxangle, minangle, maxangle])
plt.title("Target Function")
plt.xlabel("phi")
plt.ylabel("psi")
plt.show()
if __name__ == "__main__":
# batch_size == 1: converges very often nearly independent of input parameters
# batch_size == 2: no to slow convergence, but distribution stays in the right place more or less
# batch_size == 3-12: random walk
# batch_size == 1296: no movement in case of low learning_rate, random_walk in case of high learning_rate
# (this is the case where the whole map is evaluated in every step.
# 1296 is our desired testcase, because it evaluates the whole map we want to fit.
batch_size = 1
learning_rate = 1E-5
### Here we generate the target function ###
### f(phi,psi)
### phi is [-180,180]
### psi is [-180,180]
anglestep = 10.0
minangle = -180.0
maxangle = 180.0
numsteps = int((maxangle - minangle)/anglestep)
anglerange = maxangle - minangle
numbins = numsteps*numsteps
delta_angle_half = anglerange /(2.0* numsteps)
phi = np.arange(minangle, maxangle, anglestep)
psi = np.arange(minangle, maxangle, anglestep)
#Target Function Plot, Gaussian in lower left
plot_target_function(phi, psi, minangle, maxangle, delta_angle_half, numbins, numsteps )
# Input Parameter Regularization
# we map -180..180 to 0..1
# we also calculate the training parameters for our x,y pairs:
x_train = np.zeros((numbins, 2))
y_train = np.zeros((numbins, 1))
for x,ph in enumerate(phi):
for y,ps in enumerate(psi):
myphi = (ph + delta_angle_half - minangle)/(anglerange)
mypsi = (ps + delta_angle_half- minangle)/(anglerange)
x_train[x * numsteps + y, 0] = (ph +delta_angle_half - minangle)/(anglerange)
x_train[x * numsteps + y, 1] = (ps + delta_angle_half- minangle)/(anglerange)
y_train[x * numsteps + y] = twodenergy(ph +delta_angle_half,ps +delta_angle_half)
# Prediction with Keras
model = Sequential()
# Single RBF Layer, only one node
model.add(RBFLayer2D(input_shape=(2,)))
sgd = SGD(lr=learning_rate)
model.compile(loss="mean_squared_error", optimizer=sgd)
# We plot the starting configuration.
y = model.predict(x_train, batch_size=batch_size)
make_plot(y, numsteps, numbins, minangle, maxangle, 0, batch_size)
#Plot the first 15 iterations:
for i in range(0,15):
# For demonstration purposes, we fit 1 epoch and plot the output.
model.fit(x_train,y_train, epochs=1, batch_size=batch_size)
y = model.predict(x_train, batch_size=batch_size)
make_plot(y, numsteps, numbins, minangle, maxangle, 1 + i, batch_size)

Resources