super().method() vs Parent.method() - python-3.x

class Parent():
def __init__(self, x):
self.x = x
print('init parent')
def hithere(self):
print('hey there')
print(self.x)
class Child(Parent):
def __init__(self, x):
self.x = x
super().hithere()
child = Child(3)
Here I have a Parent class and a child class which inherets from the parent.
Why do I need super() If I can always do the same thing by replacing it with the name of the parent class im inhereting:
class Parent():
def __init__(self, x,y):
self.x = x
self.y = y
print('init parent')
def hithere(self):
print('hey there')
print(self.x)
class Child(Parent):
def __init__(self, x):
self.x = x
Parent.hithere(self)
child = Child(3)
which does the same thing.
My second question is it correct to say that abstract classes can't have atributes? If Parent was an abstract class, then whenever one of it's methods calls for self like hithere(self), I need to pass it back with super().method(self). So those attributes are actually Child's attributes, which just so happen to have the same attribut names as the parent class to be used.

This is one and the same thing, but you should you super() because:
In future, if you want to change the name of the parent class, then you don't have to change the name for every instance.
For e.g.
Parent.hithere(self)
Parent.hithere1(self)
Parent.hithere2(self)
Now if you change the name of your parent class, then you would have to change the name Parent for every instance. This would not be the case, if you would do:
super().hithere1()
super().hithere2()
super().hithere3()
I think your second question is ambiguous, but you can read more about the abstract class here.

You almost always want to use self.foo(), unless you're writing a Child.foo method that overwrites Parent.foo.
If you later write a Child.hithere method, your current code won't use it, which is frequently not what you want.

Related

Creating a child class from a parent method in python

I am trying to make a class that has a bunch of children that all have their own respective methods but share common methods through the parent. The problem is I need to create an instance of the child class in the parent method but am not sure how to go about it
my code so far looks like this
def filterAttribute(self, attribute, value):
newlist = []
for thing in self._things:
if thing._attributes[attribute] == value:
newlist.append(thing)
return self.__init__(newlist)
the class constructor takes in a list as its sole argument. Does anyone know if there is a standard way of doing this because my code is returning a NoneType object
Here are a few examples of classes I have made
This is the parent class:
class _DataGroup(object):
def __init__(self, things=None):
self._things=things
def __iter__(self):
for x in self._things:
yield x
def __getitem__(self, key):
return self._things[key]
def __len__(self):
return len(self._things)
def extend(self, datagroup):
if(isinstance(datagroup, self.__class__)):
self._things.extend(datagroup._things)
self._things = list(set(self._things))
def filterAttribute(self, attribute, value):
newlist = []
for thing in self._things:
if thing._attributes[attribute] == value:
newlist.append(thing)
#return self.__init__(newlist)
return self.__init__(newlist)
this is one of the child classes
class _AuthorGroup(_DataGroup):
def __init__(self, things=None):
self._things = things
def getIDs(self):
return [x.id for x in self._things]
def getNames(self):
return [x.name for x in self._things]
def getWDs(self):
return [x.wd for x in self._things]
def getUrns(self):
return [x.urn for x in self._things]
def filterNames(self, names, incl_none=False):
newlist = []
for thing in self._things:
if((thing is not None or (thing is None and incl_none)) and thing.name in names):
newlist.append(thing)
return _AuthorGroup(newlist)
The functionality I am looking for is that I can use the parent class's with the child classes and create instances of the child classes instead of the overall DataGroup parent class
So if I correctly understand what you are trying to accomplish:
You want a Base Class 'DataGroup' which has a set of defined attributes and methods;
You want one or mpore child classes with the ability to inherit both methods and attributes from the base class as well as have the ability to over-ride base class methjods if necessary: and
You want to invoke the child class without also having to manually invoke the base class.
If this in fact is your problem, this is how I would proceed:
Note: I have modified several functions, since I think you have several other issues with your code, for example in the base class self._things is set up as a list, but in the functions get_item and filterAttribute you are assuming self._things is a dictionary structure. I have modified the functions so all assume a dict structure for self._things
class _DataGroup:
def __init__(self, things=None):
if things == None:
self._things = dict() #Sets up default empty dict
else:
self._things=things
def __iter__(self):
for x in self._things.keys():
yield x
def __len__(self):
return len(self._things)
def extend(self, datagroup):
for k, v in datagroup.items():
nv = self._things.pop(k, [])
nv.append(v)
self._things[k] = nv
# This class utilizes the methods and attributes of DataGroup
# and adds new methods, unique to the child class
class AttributeGroup(_DataGroup):
def __init__(self, things=None):
super.__init__(things)
def getIDs(self):
return [x for x in self._things]
def getNames(self):
return [x.name for x in self._things]
def getWDs(self):
return [x.wd for x in self._things]
def getUrns(self):
return [x.urn for x in self._things]
# This class over-rides a DataGroup method and adds new attribute
class NewChild(_DataGroup):
def __init__(self, newAttrib, things = None):
self._newattrib = newAttrib
super.__init__(self, things)
def __len__(self):
return max(len(self._newattrib), len(self._things))
These examples are simplified, since I am not absolutely sure of what you really want.

Is it posible to use super() with all the parents in Python3 multiple inheritance?

If a class has 2 or more parents, how can I use super(), or any equivalent, to make reference to each of them? For example here:
class A:
def __init__(self, x): self.a = x
class B:
def __init__(self, y): self.b = y
class C(A,B):
def __init__(self, x, y):
super().__init__(x)
B.__init__(self,y) # I would to like to use super() here too
ObjetoC = C(4,3);
print (ObjetoC.a, ObjetoC.b) # It works fine
PD: I understand the MROrder. I just wonder if there is a way to reach a non-priority parent with super() or equivalent. Or if there is another elegant way to do that I have already done by using B.__init__(self,y)

Multiple inheritance problem with super()

I'm having a problem with multiple inheritance that I can't seem to figure out. Here is a very abstracted minimal example that reproduces my error (my code is much more complex than this).
class Thing(object):
def __init__(self, x=None):
self.x = x
class Mixin(object):
def __init__(self):
self.numbers = [1,2,3]
def children(self):
return [super().__init__(x=num) for num in self.numbers]
class CompositeThing(Mixin, Thing):
def __init__(self):
super().__init__()
def test(self):
for child in self.children():
print(child.x)
obj = CompositeThing()
obj.test()
Per this, I expect the children() method to return a list of Things built up from self.numbers. Instead, I get TypeError: super(type, obj): obj must be an instance or subtype of type. Incidentally, the same thing happens if I don't call the constructor and allow children to return super() 3 times (i.e., the uninstantiated superclass). Any ideas why this might be happening?
Thanks in advance!
In line 9 of your code, it looks like you are trying to call __init__ of object. I am assuming you meant to have Mixin inherit from Thing.
class Thing(object):
def __init__(self, x=None):
self.x = x
class Mixin(Thing):
def __init__(self):
self.numbers = [1,2,3]
def children(self):
return [super().__init__(x=num) for num in self.numbers] # Now calls Thing.__init__ instead of object.__init__
class CompositeThing(Mixin, Thing):
def __init__(self):
super().__init__()
def test(self):
for child in self.children():
print(child.x)
obj = CompositeThing()
obj.test()
Actually, I figured it out. There were two problems: (1) super() doesn't work as expected inside comprehensions because comprehensions in Py3 have their own scope - this was causing the TypeError I was experiencing. (2) What I was really trying to do was create a new instance of the parent, rather than calling a method from the parent. I have posted a new question for just the latter problem for clarity.

Better way than pass the same argument among classes in Python

I have a question related to OOP but it should be implemented in Python.
I have a file user_inputs.py with all the user parameters.
In my main file, I have a function that is called first. This function is responsible to read all the user parameters and return a dictionary that will be used in the rest of the program.
My question is: what is the cleanest way to pass the user_parameters dictionary to all classes? I did it in 2 ways:
Method 1)
def read_user_parameters():
# code to open and read all parameters etc.
return user_parameters # returns a dictionary with all the user parameters
Class A():
def __init__(self, user_parameters):
self.user_parameters = user_parameters
Class B():
def __init__(self, user_parameters):
self.user_parameters = user_parameters
user_parameters = read_user_parameters()
object_A = A(user_parameters)
object_B = B(user_parameters)
I don't like this way because I have dozens of classes that need to pass this argument. So I thought to create a parent class with the user parameters:
Method 2)
Class User_parameters():
def __init__(self, user_parameters):
def read_user_parameters():
# code to open and read all parameters etc.
return user_parameters
Class A(User_parameters):
__init__(self, user_parameters):
super().__init__()
# self.user_parameters comes from the parent class now
Class B(User_parameters):
__init__(self, user_parameters):
super().__init__()
# self.user_parameters comes from the parent class now
object_A = A()
object_B = B()
I prefer method 2, however, when super() is initialized from Class A and Class B the function read_user_parameters() that reads the file will be called twice (multiply this by dozens of times). Is there a better solution than method 1 in which I call read_user_parameters() only once but doesn't need to pass the argument for all classes?
Thank you for your time.
Why not just have a single UserParameters class and two objects of the same class (Also class nameds are supposed to be camel-cases, not snake-cased)
#Single class for user parameters
class UserParameters:
def __init__(self, user_parameters):
self.user_parameters = user_parameters
def read_user_parameters(self):
# code to open and read all parameters etc.
return self.user_parameters
#Two objects
object_A = UserParameters("<params>")
object_B = UserParameters("<params>")

Calling classmethod multiple times in python

I am trying to create a classmethod which can be called again and again, however it only works once and stops. Here is the code:
class NewBytes(bytes):
def __init__(self, var):
self.var= var
#classmethod
def rip(cls):
return cls(var[2:])
a = b"12asd5789"
x = NewBytes(a)
print(x, x.rip(), x.rip().rip(), x.rip().rip().rip())
Here is what I got from this:
b'12asd5789' b'asd5789' b'asd5789' b'asd5789'
However, what I want to have is:
b'12asd5789' b'asd5789' b'd5789' b'789'
Thanks in advance.
Probably you don't actually want a class method, since you need access to instance state here.
class NewBytes(bytes):
def __init__(self, x):
self.x = x
def rip(self):
return type(self)(self.x[2:])
My previous answer of using self.x doesnt make sense since this is a class method (too quick to answer). I think this is a case of the XY problem, see the below example of how to use a class method.
class Test(object):
x = "hey there whats up this is a long string"
#classmethod
def TestFunction(cls):
cls.x = cls.x[3:]
print(cls.x)
print(Test().x)
Test().TestFunction()
Test().TestFunction()
Test().TestFunction()
Test().TestFunction()
Test().TestFunction()

Resources