I want to convert pretrained ResNet50 model from keras.application to a Sequential model but it gives input_shape error.
Input 0 is incompatible with layer res2a_branch1: expected axis -1 of input shape to have value 64 but got shape (None, 25, 25, 256)
I read this https://github.com/keras-team/keras/issues/9721 and as I understand the reason of error is skip_connections.
Is there a way to convert it to a Sequential or how can I add my custom model to end of this ResNet Model.
This is the code I've tried.
from keras.applications import ResNet50
height = 100 #dimensions of image
width = 100
channel = 3 #RGB
# Create pre-trained ResNet50 without top layer
model = ResNet50(include_top=False, weights="imagenet", input_shape=(height, width, channel))
# Get the ResNet50 layers up to res5c_branch2c
model = Model(input=model.input, output=model.get_layer('res5c_branch2c').output)
model.trainable = False
for layer in model.layers:
layer.trainable = False
model = Sequential(model.layers)
I want to add this to end of it. Where can I start?
model.add(Conv2D(32, (3,3), activation = 'relu', input_shape = inputShape))
model.add(MaxPooling2D(2,2))
model.add(BatchNormalization(axis = chanDim))
model.add(Dropout(0.2))
model.add(Conv2D(32, (3,3), activation = 'relu'))
model.add(MaxPooling2D(2,2))
model.add(BatchNormalization(axis = chanDim))
model.add(Dropout(0.2))
model.add(Conv2D(64, (3,3), activation = 'relu'))
model.add(MaxPooling2D(2,2))
model.add(BatchNormalization(axis = chanDim))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(64, activation = 'relu'))
model.add(BatchNormalization(axis = chanDim))
model.add(Dropout(0.5))
model.add(Dense(classes, activation = 'softmax'))
Use functionl API of Keras.
First take ResNet50,
from keras.models import Model
from keras.applications import ResNet50
height = 100 #dimensions of image
width = 100
channel = 3 #RGB
# Create pre-trained ResNet50 without top layer
model_resnet = ResNet50(include_top=False, weights="imagenet", input_shape=(height, width, channel))
And add module of your model as follows, and use output of ResNet to input of the next layer
conv1 = Conv2D(32, (3,3), activation = 'relu')(model_resnet.output)
pool1 = MaxPooling2D(2,2)(conv1)
bn1 = BatchNormalization(axis=chanDim)(pool1)
drop1 = Dropout(0.2)(bn1)
Add this way all of your layer and at last for example,
flatten1 = Flatten()(drop1)
fc2 = Dense(classes, activation='softmax')(flatten1)
And, use Model() to create the final model.
model = Model(inputs=model_resnet.input, outputs=fc2)
Related
I have trained & saved a smaller network on my small dataset, and I want to use transfer learning.
I want to use this saved network on top of the conv part of the pretrained VGG16, specifically I want to freeze some layers of VGG but not all then I want to use the fc that I have already trained on my smaller dataset, and learn a model which is a combination of both with transferred weights.
I am following a mish and mash of tutorials: https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html and https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-to-classify-photos-of-dogs-and-cats/ I do not just want to use pretrained features, and I do not just want to add two new layers to the VGG's conv net, as I mentioned, I want to transfer the fc layers of the smaller network and freeze all blocks of conv layers but one of VGGs and train again. Below is my code but I get an error (no matter how I tried to change around the code, I get a similar error)
from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential, Model
from keras.layers import Dropout, Flatten, Dense
# path to the model weights files.
weights_path = '/home/d/Desktop/s/vgg16_weights.h5'
top_model_weights_path = '/home/d/Desktop/s/model_weights.h5'
# dimensions of our images.
img_width, img_height = 256, 256
# build the VGG16 network
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(256, 256, 3))
print('Model loaded.')
# set the first 25 layers (up to the last conv block)
# to non-trainable (weights will not be updated)
for layer in base_model.layers[:15]:
layer.trainable = False
# build a classifier model to put on top of the convolutional model
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(1, activation='sigmoid'))
# note that it is necessary to start with a fully-trained
# classifier, including the top classifier,
# in order to successfully do fine-tuning
top_model.load_weights(top_model_weights_path)
model= Model(inputs=base_model.input, outputs=top_model(base_model.output))
# add the model on top of the convolutional base
#model.add(top_model)
print(top_model.summary())
# compile the model with a SGD/momentum optimizer
# and a very slow learning rate.
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
metrics=['accuracy'])
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
train_dir = '/home/d/Desktop/s/data/train'
eval_dir = '/home/d/Desktop/s/data/eval'
test_dir = '/home/d/Desktop/s/data/test'
# create a data generator
train_datagen = ImageDataGenerator(rescale=1./255, #Scale the image between 0 and 1
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,)
val_datagen = ImageDataGenerator(rescale=1./255) #We do not augment validation data. we only perform rescale
test_datagen = ImageDataGenerator(rescale=1./255) #We do not augment validation data. we only perform rescale
# load and iterate training dataset
train_generator = train_datagen.flow_from_directory(train_dir, class_mode='binary', batch_size=16, shuffle='True', seed=42)
# load and iterate validation dataset
val_generator = val_datagen.flow_from_directory(eval_dir, class_mode='binary', batch_size=16, shuffle='True', seed=42)
# load and iterate test dataset
test_generator = test_datagen.flow_from_directory(test_dir, class_mode=None, batch_size=1, shuffle='False', seed=42)
#The training part
#We train for 64 epochs with about 100 steps per epoch
history = model.fit_generator(train_generator,
steps_per_epoch=train_generator.n // train_generator.batch_size,
epochs=6,
validation_data=val_generator,
validation_steps=val_generator.n // val_generator.batch_size)
The error I am getting is:
Model loaded.
Traceback (most recent call last):
File "/home/d/Desktop/s/transferLearningS.py", line 33, in <module>
top_model.load_weights(top_model_weights_path)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/network.py", line 1166, in load_weights
f, self.layers, reshape=reshape)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/saving.py", line 1030, in load_weights_from_hdf5_group
str(len(filtered_layers)) + ' layers.')
ValueError: You are trying to load a weight file containing 6 layers into a model with 2 layers.
And my smaller network is built this way:
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', input_shape=(256, 256, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(Dropout(0.2))
model.add(layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(Dropout(0.2))
model.add(layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_uniform'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(Dropout(0.2))
model.add(layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_uniform'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(Dropout(0.2))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5)) #Dropout for regularization
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid')) #Sigmoid function at the end because we have just two classes
Any recommendations how I can fix this issue?
I have trained a model on colab using artifical neural network (keras) and in the end I want to save it but getting error. I have tried pydrive method also. I have all the required library previously when I run it on local computer it worked.
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.models import model_from_json
model = Sequential() # create model
model.add(Dense(6, input_dim = 8, activation = 'relu'))
model.add(Dense(6, activation = 'relu')) # hidden layer
model.add(Dense(1, activation = 'sigmoid')) # output layer
model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
model.fit(X_train, y_train, epochs=100, batch_size=10)
def build_classifier():
model = Sequential() # create model
model.add(Dense(6, input_dim = 8, activation = 'relu'))
model.add(Dense(6, activation = 'relu')) # hidden layer
model.add(Dense(1, activation = 'sigmoid')) # output layer
model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
return model
model = KerasClassifier(build_fn = build_classifier, epochs=100, batch_size=32)
accuracies = cross_val_score(estimator = model,X = X_train, y = y_train, cv = 10, n_jobs = -1)
model.save("model.h5")
but getting error 'KerasClassifier' object has no attribute 'save'. does google colab required different method to save model?
'KerasClassifier' object has no attribute 'save'
Error occur because I tried to save KerasClassifier(Cross-validation function) Since the The purpose of cross-validation is model checking, not model building. So after changing parameter model will be saved.Thanks #MatiasValdenegro for insight.
Better explanation available at
https://stats.stackexchange.com/questions/52274/how-to-choose-a-predictive-model-after-k-fold-cross-validation
I'm working on a racing game that uses reinforcement learning. To train the model I'm facing an issue when implementing the neural network. I found some examples that use CNN. But it seems like adding extra LSTM layer will increase the model efficiency. I found the following example.
https://team.inria.fr/rits/files/2018/02/ICRA18_EndToEndDriving_CameraReady.pdf
The network I need to implement
The problem is I'm not sure how can I implement the LSTM layer here. How can I give following inputs to LSTM layer
Processed image output
current speed
last action
Here is the code I'm currently using. I want to add the LSTM layer after Conv2D.
self.__nb_actions = 28
self.__gamma = 0.99
#Define the model
activation = 'relu'
pic_input = Input(shape=(59,255,3))
img_stack = Conv2D(16, (3, 3), name='convolution0', padding='same', activation=activation, trainable=train_conv_layers)(pic_input)
img_stack = MaxPooling2D(pool_size=(2,2))(img_stack)
img_stack = Conv2D(32, (3, 3), activation=activation, padding='same', name='convolution1', trainable=train_conv_layers)(img_stack)
img_stack = MaxPooling2D(pool_size=(2, 2))(img_stack)
img_stack = Conv2D(32, (3, 3), activation=activation, padding='same', name='convolution2', trainable=train_conv_layers)(img_stack)
img_stack = MaxPooling2D(pool_size=(2, 2))(img_stack)
img_stack = Flatten()(img_stack)
img_stack = Dropout(0.2)(img_stack)
img_stack = Dense(128, name='rl_dense', kernel_initializer=random_normal(stddev=0.01))(img_stack)
img_stack=Dropout(0.2)(img_stack)
output = Dense(self.__nb_actions, name='rl_output', kernel_initializer=random_normal(stddev=0.01))(img_stack)
opt = Adam()
self.__action_model = Model(inputs=[pic_input], outputs=output)
self.__action_model.compile(optimizer=opt, loss='mean_squared_error')
self.__action_model.summary()
Thanks
There are various methods to do that, First, reshape the output of conv output and feed it to lstm layer. Here is an explained example with various method Shaping data for LSTM, and feeding output of dense layers to LSTM
I'm worked on sentiment analysis task using universal sentence encoder embed_size=512 with CNN but have an error says: Input 0 is incompatible with layer conv1d_6: expected ndim=3, found ndim=2.
and wanna know if this is right to add universal sentence encoder with CNN in this way or not?
pickle_in=open("X.pickle","rb")
X=pickle.load(pickle_in)
X = X.tolist() #convert x to list as The embedding code works once I
converted
the pandas.series data type to list.
X = np.array(X, dtype=object)[:, np.newaxis]
pickle_in=open("Y.pickle","rb")
Y=pickle.load(pickle_in)
Y = np.asarray(pd.get_dummies(Y), dtype = np.int8)
import tensorflow as tf
import tensorflow_hub as hub
module_url = "https://tfhub.dev/google/universal-sentence-encoder-large/3"
embed = hub.Module(module_url)
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.15,
random_state = 42)
X_train, X_Val, Y_train, Y_Val = train_test_split(X_train,Y_train, test_size
= 0.15, random_state = 42)
print(X_train.shape,Y_train.shape)
print(X_test.shape,Y_test.shape)
print(X_Val.shape,Y_Val.shape)
type(Y_test)
embed_size = embed.get_output_info_dict()['default'].get_shape()[1].value
def UniversalEmbedding(x):
return embed(tf.squeeze(tf.cast(x, tf.string)),
signature="default", as_dict=True)["default"]
import keras
seed=7
np.random.seed(seed)
from keras.layers import Input, Dense, concatenate, Activation,
GlobalMaxPooling1D
from keras import layers
from keras.models import Model
input_text = layers.Input(shape=(1,), dtype=tf.string)
embedding = layers.Lambda(UniversalEmbedding,
output_shape=(embed_size,))(input_text)
bigram_branch = Conv1D(filters=64, kernel_size=1, padding='same',
activation='relu', strides=1)(embedding)
bigram_branch = GlobalMaxPooling1D()(bigram_branch)
trigram_branch = Conv1D(filters=64, kernel_size=2, padding='same',
activation='relu', strides=1)(embedding)
trigram_branch = GlobalMaxPooling1D()(trigram_branch)
fourgram_branch = Conv1D(filters=64, kernel_size=3, padding='same',
activation='relu', strides=1)(embedding)
fourgram_branch = GlobalMaxPooling1D()(fourgram_branch)
merged = concatenate([bigram_branch, trigram_branch, fourgram_branch],
axis=1)
merged = Dense(512, activation='relu')(merged)
merged = Dropout(0.8)(merged)
merged = Dense(2)(merged)
output = Activation('sigmoid')(merged)
model = Model(inputs=[tweet_input], outputs=[output])
adam=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None,
decay=0.0, amsgrad=False)
model.compile(loss='mean_squared_error',
optimizer= adam,
metrics=['accuracy'])
model.summary()
You can not directly pass Universal Sentence Encoder to Conv1D because Conv1D expected a tensor with shape [batch, sequence, feature] while the output of Universal Sentence Encoder is [batch, feature]. It is also stated in tfhub.dev:
The input is variable length English text and the output is a 512
dimensional vector.
How can I fix this?
In my view, the easiest possible solution is to use ELMo on Tensorhub. With ELMo you can map each sentence to [batch, sequence, feature] and then feed into the Conv1D.
x = np.load('/Users/bharddwajvemulapalli/Documents/tensorFlowProjects/Sign-language-digits-dataset 2/X.npy')
y = np.load('/Users/bharddwajvemulapalli/Documents/tensorFlowProjects/Sign-language-digits-dataset 2/Y.npy')
x = x/255
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation,Flatten, Conv2D, MaxPooling2D #dense means fully connected
from tensorflow.keras.callbacks import TensorBoard
print(x.shape) # (2062, 64, 64)
BATCH_SIZE = 32
model = Sequential()
model.add(Conv2D(64,(6,6), input_shape = (64,64,1))) #figure out this input shape parameter to make this work
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Conv2D(3,3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Flatten())
model.add(Dense(1))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(1)) #output layer
model.add(Activation('sigmoid'))
model.compile(loss = 'sparse_categorical_crossentropy', optimizer ='adam' , metrics = ['accuracy'])
#x = np.arange(8445952)
#x= np.reshape(64,64,1)
model.fit(x,y,batch_size = 32, epochs = 2, validation_split =.1)
The above is my code. I thought that keras would automatically attach batch_size to (64,64,1) so that I could get 4 dimensions, because when I add a fourth dimension myself, then I get an error that it wasn't expecting an array of dimension 5.
x must be 4-dimensional, where the 4th dimension is the number of channels. Since in your case there is only 1 channel, you can add the channel by
if x.ndim == 3:
x = np.expand_dims(x, axis=-1)
This will add a new dimension at the end.