I have a very large dataframe with 1,000 columns. The first few columns occur only once, denoting a customer. The next few columns are representative of multiple encounters with the customer, with an underscore and the number encounter. Every additional encounter adds a new column, so there is NOT a fixed number of columns -- it'll grow with time.
Sample dataframe header structure excerpt:
id dob gender pro_1 pro_10 pro_11 pro_2 ... pro_9 pre_1 pre_10 ...
I'm trying to re-order the columns based on the number after the column name, so all _1 should be together, all _2 should be together, etc, like so:
id dob gender pro_1 pre_1 que_1 fre_1 gen_1 pro2 pre_2 que_2 fre_2 ...
(Note that the re-order should order the numbers correctly; the current order treats them like strings, which orders 1, 10, 11, etc. rather than 1, 2, 3)
Is this possible to do in pandas, or should I be looking at something else? Any help would be greatly appreciated! Thank you!
EDIT:
Alternatively, is it also possible to re-arrange column names based on the string part AND number part of the column names? So the output would then look similar to the original, except the numbers would be considered so that the order is more intuitive:
id dob gender pro_1 pro_2 pro_3 ... pre_1 pre_2 pre_3 ...
EDIT 2.0:
Just wanted to thank everyone for helping! While only one of the responses worked, I really appreciate the effort and learned a lot about other approaches / ways to think about this.
Here is one way you can try:
# column names copied from your example
example_cols = 'id dob gender pro_1 pro_10 pro_11 pro_2 pro_9 pre_1 pre_10'.split()
# sample DF
df = pd.DataFrame([range(len(example_cols))], columns=example_cols)
df
# id dob gender pro_1 pro_10 pro_11 pro_2 pro_9 pre_1 pre_10
#0 0 1 2 3 4 5 6 7 8 9
# number of columns excluded from sorting
N = 3
# get a list of columns from the dataframe
cols = df.columns.tolist()
# split, create an tuple of (column_name, prefix, number) and sorted based on the 2nd and 3rd item of the tuple, then retrieved the first item.
# adjust "key = lambda x: x[2]" to group cols by numbers only
cols_new = cols[:N] + [ a[0] for a in sorted([ (c, p, int(n)) for c in cols[N:] for p,n in [c.split('_')]], key = lambda x: (x[1], x[2])) ]
# get the new dataframe based on the cols_new
df_new = df[cols_new]
# id dob gender pre_1 pre_10 pro_1 pro_2 pro_9 pro_10 pro_11
#0 0 1 2 8 9 3 6 7 4 5
Luckily there is a one liner in python that can fix this:
df = df.reindex(sorted(df.columns), axis=1)
For Example lets say you had this dataframe:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Name': [2, 4, 8, 0],
'ID': [2, 0, 0, 0],
'Prod3': [10, 2, 1, 8],
'Prod1': [2, 4, 8, 0],
'Prod_1': [2, 4, 8, 0],
'Pre7': [2, 0, 0, 0],
'Pre2': [10, 2, 1, 8],
'Pre_2': [10, 2, 1, 8],
'Pre_9': [10, 2, 1, 8]}
)
print(df)
Output:
Name ID Prod3 Prod1 Prod_1 Pre7 Pre2 Pre_2 Pre_9
0 2 2 10 2 2 2 10 10 10
1 4 0 2 4 4 0 2 2 2
2 8 0 1 8 8 0 1 1 1
3 0 0 8 0 0 0 8 8 8
Then used
df = df.reindex(sorted(df.columns), axis=1)
Then the dataframe will then look like:
ID Name Pre2 Pre7 Pre_2 Pre_9 Prod1 Prod3 Prod_1
0 2 2 10 2 10 10 2 10 2
1 0 4 2 0 2 2 4 2 4
2 0 8 1 0 1 1 8 1 8
3 0 0 8 0 8 8 0 8 0
As you can see, the columns without underscore will come first, followed by an ordering based on the number after the underscore. However this also sorts of the column names, so the column names that come first in the alphabet will be first.
You need to split you column on '_' then convert to int:
c = ['A_1','A_10','A_2','A_3','B_1','B_10','B_2','B_3']
df = pd.DataFrame(np.random.randint(0,100,(2,8)), columns = c)
df.reindex(sorted(df.columns, key = lambda x: int(x.split('_')[1])), axis=1)
Output:
A_1 B_1 A_2 B_2 A_3 B_3 A_10 B_10
0 68 11 59 69 37 68 76 17
1 19 37 52 54 23 93 85 3
Next case, you need human sorting:
import re
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
'''
alist.sort(key=natural_keys) sorts in human order
http://nedbatchelder.com/blog/200712/human_sorting.html
(See Toothy's implementation in the comments)
'''
return [ atoi(c) for c in re.split(r'(\d+)', text) ]
df.reindex(sorted(df.columns, key = lambda x:natural_keys(x)), axis=1)
Output:
A_1 A_2 A_3 A_10 B_1 B_2 B_3 B_10
0 68 59 37 76 11 69 68 17
1 19 52 23 85 37 54 93 3
Try this.
To re-order the columns based on the number after the column name
cols_fixed = df.columns[:3] # change index no based on your df
cols_variable = df.columns[3:] # change index no based on your df
cols_variable = sorted(cols_variable, key=lambda x : int(x.split('_')[1])) # split based on the number after '_'
cols_new = cols_fixed + cols_variable
new_df = pd.DataFrame(df[cols_new])
To re-arrange column names based on the string part AND number part of the column names
cols_fixed = df.columns[:3] # change index no based on your df
cols_variable = df.columns[3:] # change index no based on your df
cols_variable = sorted(cols_variable)
cols_new = cols_fixed + cols_variable
new_df = pd.DataFrame(df[cols_new])
Related
I have two pandas dataframes and i want to find all entries of the second dataframe where a specific value occurs.
As an example:
df1:
NID
0 1
1 2
2 3
3 4
4 5
df2:
EID N1 N2 N3 N4
0 1 1 2 13 12
1 2 2 3 14 13
2 3 3 4 15 14
3 4 4 5 16 15
4 5 5 6 17 16
5 6 6 7 18 17
6 7 7 8 19 18
7 8 8 9 20 19
8 9 9 10 21 20
9 10 10 11 22 21
Now, what i basically want, is a list of lists with the values EID (from df2) where the values NID (from df1) occur in any of the columns N1,N2,N3,N4:
Solution would be:
sol = [[1], [1, 2], [2, 3], [3, 4], [4, 5]]
The desired solution explained:
The solution has 5 entries (len(sol = 5)) since I have 5 entries in df1.
The first entry in sol is 1 because the value NID = 1 only appears in the columns N1,N2,N3,N4 for EID=1 in df2.
The second entry in sol refers to the value NID=2 (of df1) and has the length 2 because NID=2 can be found in column N1 (for EID=2) and in column N2 (for EID=1). Therefore, the second entry in the solution is [1,2] and so on.
What I tried so far is looping for each element in df1 and then looping for each element in df2 to see if NID is in any of the columns N1,N2,N3,N4. This solution works but for huge dataframes (each df can have up to some thousand entries) this solution becomes extremely time-consuming.
Therefore I was looking for a much more efficient solution.
My code as implemented:
Input data:
import pandas as pd
df1 = pd.DataFrame({'NID':[1,2,3,4,5]})
df2 = pd.DataFrame({'EID':[1,2,3,4,5,6,7,8,9,10],
'N1':[1,2,3,4,5,6,7,8,9,10],
'N2':[2,3,4,5,6,7,8,9,10,11],
'N3':[13,14,15,16,17,18,19,20,21,22],
'N4':[12,13,14,15,16,17,18,19,20,21]})
solution acquired using looping:
sol= []
for idx,node in df1.iterrows():
x = []
for idx2,elem in df2.iterrows():
if node['NID'] == elem['N1']:
x.append(elem['EID'])
if node['NID'] == elem['N2']:
x.append(elem['EID'])
if node['NID'] == elem['N3']:
x.append(elem['EID'])
if node['NID'] == elem['N4']:
x.append(elem['EID'])
sol.append(x)
print(sol)
If anyone has a solution where I do not have to loop, I would be very happy. Maybe using a numpy function or something like cKDTrees but unfortunately I have no idea on how to get this problem solved in a faster way.
Thank you in advance!
You can reshape with melt, filter with loc, and groupby.agg as list. Then reindex and convert tolist:
out = (df2
.melt('EID') # reshape to long form
# filter the values that are in df1['NID']
.loc[lambda d: d['value'].isin(df1['NID'])]
# aggregate as list
.groupby('value')['EID'].agg(list)
# ensure all original NID are present in order
# and convert to list
.reindex(df1['NID']).tolist()
)
Alternative with stack:
df3 = df2.set_index('EID')
out = (df3
.where(df3.isin(df1['NID'].tolist())).stack()
.reset_index(name='group')
.groupby('group')['EID'].agg(list)
.reindex(df1['NID']).tolist()
)
Output:
[[1], [2, 1], [3, 2], [4, 3], [5, 4]]
I have dataframe which is mentioned below, i have large data wanted to create diffrent data frame from substring values of column
df
ID ex_srr123 ex2_srr124 ex3_srr125 ex4_srr1234 ex23_srr5323
san 12 43 0 34 0
mat 53 0 34 76 656
jon 82 223 23 32 21
jack 0 12 2 0 0
i have a list of substring of column
coln1=['srr123', 'srr124']
coln2=['srr1234','srr5323']
I wanted
df2=
ID ex_srr123 ex2_srr12
san 12 43
mat 53 0
jon 82 223
jack 0 12
I tried
df2=df[coln1]
i didn't get what i wanted please help me how can i get desire output
Statically
df2 = df.filter(regex="srr123$|srr124$").copy()
Dynamically
coln1 = ['srr123', 'srr124']
df2 = df.filter(regex=f"{coln1[0]}$|{coln1[1]}$").copy()
The $ signifies the end of the string, so that the column ex4_srr1234 isn't also included in your result.
Look into the filter method
df.filter(regex="srr123|srr124").copy()
I am making a few assumptions:
'ID' is a column and not the index.
The third column in df2 should read 'ex2_srr124' instead of 'ex2_srr12'.
You do not want to include columns of 'df' in 'df2' if the substring does not match everything after the underscore (since 'srr123' is a substring of 'ex4_srr1234' but you did not include it in 'df2').
# set the provided data frames
df = pd.DataFrame([['san', 12, 43, 0, 34, 0],
['mat', 53, 0, 34, 76, 656],
['jon', 82, 223, 23, 32, 21],
['jack', 0, 12, 2, 0, 0]],
columns = ['ID', 'ex_srr123', 'ex2_srr124', 'ex3_srr125', 'ex4_srr1234', 'ex23_srr5323'])
# set the list of column-substrings
coln1=['srr123', 'srr124']
coln2=['srr1234','srr5323']
I suggest to solve this as follows:
# create df2 and add the ID column
df2 = pd.DataFrame()
df2['ID'] = df['ID']
# iterate over each substring in a list of column-substrings
for substring in coln1:
# iterate over each column name in the df columns
for column_name in df.columns.values:
# check if column name ends with substring
if substring == column_name[-len(substring):]:
# assign the new column to df2
df2[column_name] = df[column_name]
This yields the desired dataframe df2:
ID ex_srr123 ex2_srr124
0 san 12 43
1 mat 53 0
2 jon 82 223
3 jack 0 12
df.filter(regex = '|'.join(['ID'] + [col+ '$' for col in coln1])).copy()
ID ex_srr123 ex2_srr124
0 san 12 43
1 mat 53 0
2 jon 82 223
3 jack 0 12
df= pd.DataFrame({'days': [0,31,45,35,19,70,80 ]})
df['range'] = pd.cut(df.days, [0,30,60])
df
Here as code is reproduced , where pd.cut is used to convert a numerical column to categorical column . pd.cut usually gives category as per the list passed [0,30,60]. In this row's 0 , 5 & 6 categorized as Nan which is beyond the [0,30,60]. what i want is 0 should categorized as <0 & 70 should categorized as >60 and similarly 80 should categorized as >60 respectively, If possible dynamic text labeling of A,B,C,D,E depending on no of category created.
For the first part, adding -np.inf and np.inf to the bins will ensure that everything gets a bin:
In [5]: df= pd.DataFrame({'days': [0,31,45,35,19,70,80]})
...: df['range'] = pd.cut(df.days, [-np.inf, 0, 30, 60, np.inf])
...: df
...:
Out[5]:
days range
0 0 (-inf, 0.0]
1 31 (30.0, 60.0]
2 45 (30.0, 60.0]
3 35 (30.0, 60.0]
4 19 (0.0, 30.0]
5 70 (60.0, inf]
6 80 (60.0, inf]
For the second, you can use .cat.codes to get the bin index and do some tweaking from there:
In [8]: df['range'].cat.codes.apply(lambda x: chr(x + ord('A')))
Out[8]:
0 A
1 C
2 C
3 C
4 B
5 D
6 D
dtype: object
I have a dataframe which has 2 columns called locStuff and data. Someone was kind enough to show me how to index a location range in the df so that it correctly changes the data to a single integer attached to locStuff instead of the dataframe index, that works fine, now I cannot see how to change the data values of that location range with a list of values.
import pandas as pd
INDEX = list(range(1, 11))
LOCATIONS = [3, 10, 6, 2, 9, 1, 7, 5, 8, 4]
DATA = [94, 43, 85, 10, 81, 57, 88, 11, 35, 86]
# Make dataframe
DF = pd.DataFrame(LOCATIONS, columns=['locStuff'], index=INDEX)
DF['data'] = pd.Series(DATA, index=INDEX)
# Location and new value inputs
LOC_TO_CHANGE = 8
NEW_LOC_VALUE = 999
NEW_LOC_VALUE = [999,666,333]
LOC_RANGE = list(range(3, 6))
DF.iloc[3:6, 1] = ('%03d' % NEW_LOC_VALUE)
print(DF)
#I TRIED BOTH OF THESE SEPARATELY
for i in NEW_LOC_VALUE:
for j in LOC_RANGE:
DF.iloc[j, 1] = ('%03d' % NEW_LOC_VALUE[i])
print (DF)
i=0
while i<len(NEW_LOC_VALUE):
for j in LOC_RANGE:
DF.iloc[j, 1] = ('%03d' % NEW_LOC_VALUE[i])
i=+1
print(DF)
Neither of these work:
for i in NEW_LOC_VALUE:
for j in LOC_RANGE:
DF.iloc[j, 1] = ('%03d' % NEW_LOC_VALUE[i])
print (DF)
i=0
while i<len(NEW_LOC_VALUE):
for j in LOC_RANGE:
DF.iloc[j, 1] = ('%03d' % NEW_LOC_VALUE[i])
i=+1
I know how to do this using loops or list comprehensions for an empty list but no idea how to adapt what I have above for a DataFrame.
Expected behaviour would be:
locStuff data
1 3 999
2 10 43
3 6 85
4 2 10
5 9 81
6 1 57
7 7 88
8 5 333
9 8 35
10 4 666
Try setting locStuff as index, assign values, and reset_index:
DF.set_index('locStuff', inplace=True)
DF.loc[LOC_RANGE, 'data'] = NEW_LOC_VALUE
DF.reset_index(inplace=True)
Output:
locStuff data
0 3 999
1 10 43
2 6 85
3 2 10
4 9 81
5 1 57
6 7 88
7 5 333
8 8 35
9 4 666
I am analyzing a dataset that has an Origin ID (Column A), a Destination ID (Column B), and how many trips have happened between them (Column Count). Now I want to sum the A-B trips with the B-A trips. This sum is the total number of trips between A and B.
Here is how my data looks like (it is not necessarily ordered in the same way):
In [1]: group_station = pd.DataFrame([[1, 2, 100], [2, 1, 200], [4, 6, 5] , [6, 4, 10], [1, 4, 70]], columns=['A', 'B', 'Count'])
Out[2]:
A B Count
0 1 2 100
1 2 1 200
2 4 6 5
3 6 4 10
4 1 4 70
And I want the following output:
A B C
0 1 2 300
1 4 6 15
4 1 4 70
I have tried groupby and setting the index to both variables with no success. Right now I am doing a very inefficient double loop, that is too slow for the size of my dataset.
If it helps this is the code for the double loop (I removed some efficiency modifications to make it more clear):
# group_station is the dataframe
collapsed_group_station = np.zeros(len(group_station), 3))
for i, row in enumerate(group_station.iterrows()):
start_id = row[0][0]
end_id = row[0][1]
count = row[1][0]
for check_row in group_station.iterrows():
check_start_id = check_row[0][0]
check_end_id = check_row[0][1]
check_time = check_row[1][0]
if start_id == check_end_id and end_id == check_start_id:
new_group_station[i][0] = start_id
new_group_station[i][1] = end_id
new_group_station[i][2] = time + check_time
break
I have ideas of how to make this code more efficient, but I wanted to know if there is a way of doing it without looping.
You can using np.sort with groupby.sum()
import numpy as np; import pandas as pd
group_station[['A','B']]=np.sort(group_station[['A','B']],axis=1)
group_station.groupby(['A','B'],as_index=False).Count.sum()
Out[175]:
A B Count
0 1 2 300
1 1 4 70
2 4 6 15