Optimization of a query which uses arithmetic operations in WHERE clause - cassandra

I need to retrieve records where the expiration date is today. The expiration date is calculated dynamically using two other fields (startDate and durationDays):
SELECT * FROM subscription WHERE startDate + durationDays < currentDate()
Does it make sense to add two indexes for these two columns? Or should I consider adding a new column expirationDate and create an index for it only?

SELECT * FROM subscription WHERE startDate + durationDays < currentDate()
I'm wondering how does Cassandra handle such a filter as in my example? Does it make a full scan?
First of all, your question is predicated on CQL's ability to perform (date) arithmetic. It cannot.
> SELECT * FROM subscription WHERE startDate + durationDays < currentDate();
SyntaxException: line 1:43 no viable alternative at input '+' (SELECT * FROM subscription WHERE [startDate] +...)
Secondly the currentDate() function does not exist in Cassandra 3.11.4.
> SELECT currentDate() FROM system.local;
InvalidRequest: Error from server: code=2200 [Invalid query] message="Unknown function 'currentdate'"
That does work in Cassandra 4.0, which as it has not been released yet, you really shouldn't be using.
So let's assume that you've created your secondary indexes on startDate and durationDays and you're just querying on those, without any arithmetic.
Does it execute a full table scan?
ABSOLUTELY.
The reason, is that querying solely on secondary index columns does not have a partition key. Therefore, it has to search for these values on all partitions on all nodes. In a large cluster, your query would likely time out.
Also, when it finds matching data, it has to keep querying. As those values are not unique; it's entirely possible that there are several results to be returned. Carlos in 100% correct is advising you to rebuild your table based on what you want to query.
Recommendations:
Try not to build a table with secondary indexes. Like ever.
If you have to build a table with secondary indexes, try to have a partition key in your WHERE clause to keep the query isolated to a single node.
Any filtering on dynamic (computed) values needs to be done on the application side.
In your case, it might make more sense to create a column called expirationDate, do your date arithmetic in your app, and then INSERT that value into your table.
You'll also want follow the "time bucket" pattern for handling time series data (which is what this appears to be). Say that month works as a "bucket" (it may or may not for your use case). PRIMARY KEY ((month),expirationDate,id) would be a good key. This way, all the subscriptions for a particular month are stored together, clustered by expirationDate, with id on the end to act as a tie-breaker for uniqueness.

One of the main differences between Cassandra and relational databases is that the definition of the tables depend on the query that will be used. The conditional of how the data will be retrieved (WHERE statement) should be included in the primary key as it will perform better than an index on the table.
There are multiple resources regarding the read path, and the quirks of primary keys vs indexes, this talk from the Cassandra Summit may be useful.

Related

Cassandra - get all data for a certain time range

Is it possible to query a Cassandra database to get records for a certain range?
I have a table definition like this
CREATE TABLE domain(
domain_name text,
status int,
last_scanned_date long
PRIMARY KEY(text,last_scanned_date)
)
My requirement is to get all the domains which are not scanned in the last 24 hours. I wrote the following query, but this query is not efficient as Cassandra is trying to fetch entire dataset because of ALLOW FILTERING
SELECT * FROM domain where last_scanned_date<=<last24hourstimeinmillis> ALLOW FILTERING;
Then I decided to do it in two queries
1st query:
SELECT DISTINCT name from domain;
2nd query:
Use IN operator to query domains which are not scanned i nlast 24 hours
SELECT * FROM domain where
domain_name IN('domain1','domain2')
AND
last_scanned_date<=<last24hourstimeinmillis>
My second approach works, but comes with an extra overhead of querying first for distinct values.
Is there any better approach than this?
You should update your structure table definition. Currently, you are selecting domain name as your partition key while you can not have more than 2 billion records in single Cassandra partition.
I would suggest you should use your time as part of your partition key. If you are not going to receive more than 2 billion requests per day. Try to use day since epoch as the partition key. You can do composite partition keys but they won't be helpful for your query.
While querying you have to scan at max two partitions with an additional filter in a query or in your application filtering out results which do not belong to a
the range you have specified.
Go over following concepts before finalizing your design.
https://docs.datastax.com/en/cql/3.3/cql/cql_using/useCompositePartitionKeyConcept.html
https://docs.datastax.com/en/dse-planning/doc/planning/planningPartitionSize.html
Cassandra can effectively perform range queries only inside one partition. The same is for use of the aggregations, such as DISTINCT. So in your case you'll need to have only one partition that will contain all data. But that's is bad design.
You may try to split this big partition into smaller ones, by using TLDs as separate partition keys, and perform fetching in parallel from every partition - but this also will lead to imbalance, as some TLDs will have more sites than other.
Another issue with your schema is that you have last_scanned_date as clustering column, and this means that when you update last_scanned_date, you're effectively insert a new row into database - you'll need to explicitly remove row for previous last_scanned_date, otherwise the query last_scanned_date<=<last24hourstimeinmillis> will always fetch old rows that you already scanned.
Partially your problem with your current design could be solved by using the Spark that is able to perform effective scanning of full table via token range scan + range scan for every individual row - this will return only data in given time range. Or if you don't want to use Spark, you can perform token range scan in your code, something like this.

Cassandra use aggregate function and then order by that aggregate

I have a cassandra database with a table that has the following columns:
itemid
userid
rating
itemid and userid are the primary key. My query looks like this:
SELECT itemid, avg(rating) as avgRating from mytable GROUP BY itemid order by avgRating asc;
I get the following error:
InvalidRequest: Error from server: code=2200 [Invalid query] message="ORDER BY is only supported when the partition key is restricted by an EQ or an IN."
How can I fix this?
I need to order by the average ratings after so I can get the top 10 movies based on their average rating.
Cassandra can only order results by clustering column(s). It cannot order results by an aggregate function.
There are a couple of options you could look at in order to accomplish this.
Make the query and then re-order the results in your application.
This option may work if you only expect a limited number of rows to be returned from each query.
Note that it is recommended that you only use aggregate functions (like avg()) when you know that it will only apply to a limited number of rows. Ideally you should only use them when operating on a single partition (use a WHERE clause to limit to a single partition). If you don't have any limit you may see very slow queries, or query timeouts if Cassandra needs to read a large number of rows in order to calculate the aggregate.
Store a pre-calculated average in the table, or cache it in your application.
This is the best option if you need calculated averages over a larger data set.
If you make average_rating a clustering column Cassandra will store the averages for each partition in sorted order. This is very efficient from Cassandra's perspective.
The downside is that you'll need to calculate the average in your application each time you insert into or update a row, because it will be a primary key column in your Cassandra table.
One thing you could look into is using a Cassandra trigger to calculate the average for you. This may make life easier for you if you have multiple applications writing to this table, however I am not actually sure if it is possible to modify a primary key column via a custom trigger. I would recommend doing some research & testing if you decide to look at this option. You can read about triggers here.

Cassandra Allow filtering

I have a table as below
CREATE TABLE test (
day int,
id varchar,
start int,
action varchar,
PRIMARY KEY((day),start,id)
);
I want to run this query
Select * from test where day=1 and start > 1475485412 and start < 1485785654
and action='accept' ALLOW FILTERING
Is this ALLOW FILTERING efficient?
I am expecting that cassandra will filter in this order
1. By Partitioning column(day)
2. By the range column(start) on the 1's result
3. By action column on 2's result.
So the allow filtering will not be a bad choice on this query.
In case of the multiple filtering parameters on the where clause and the non indexed column is the last one, how will the filter work?
Please explain.
Is this ALLOW FILTERING efficient?
When you write "this" you mean in the context of your query and your model, however the efficiency of an ALLOW FILTERING query depends mostly on the data it has to filter. Unless you show some real data this is a hard to answer question.
I am expecting that cassandra will filter in this order...
Yeah, this is what will happen. However, the inclusion of an ALLOW FILTERING clause in the query usually means a poor table design, that is you're not following some guidelines on Cassandra modeling (specifically the "one query <--> one table").
As a solution, I could hint you to include the action field in the clustering key just before the start field, modifying your table definition:
CREATE TABLE test (
day int,
id varchar,
start int,
action varchar,
PRIMARY KEY((day),action,start,id)
);
You then would rewrite your query without any ALLOW FILTERING clause:
SELECT * FROM test WHERE day=1 AND action='accept' AND start > 1475485412 AND start < 1485785654
having only the minor issue that if one record "switches" action values you cannot perform an update on the single action field (because it's now part of the clustering key), so you need to perform a delete with the old action value and an insert it with the correct new value. But if you have Cassandra 3.0+ all this can be done with the help of the new Materialized View implementation. Have a look at the documentation for further information.
In general ALLOW FILTERING is not efficient.
But in the end it depends on the size of the data you are fetching (for which cassandra have to use ALLOW FILTERING) and the size of data its being fetched from.
In your case cassandra do not need filtering upto :
By the range column(start) on the 1's result
As you mentioned. But after that, it will rely on filtering to search data, which you are allowing in query itself.
Now, keep following in mind
If your table contains for example a 1 million rows and 95% of them have the requested value, the query will still be relatively efficient and you should use ALLOW FILTERING.
On the other hand, if your table contains 1 million rows and only 2 rows contain the requested value, your query is extremely inefficient. Cassandra will load 999, 998 rows for nothing. If the query is often used, it is probably better to add an index on the time1 column.
So ensure this first. If it works in you favour, use FILTERING.
Otherwise, it would be wise to add secondary index on 'action'.
PS : There is some minor edit.

Where and Order By Clauses in Cassandra CQL

I am new to NoSQL database and have just started using apache Cassandra. I created a simple table "emp" with primary key on "empno" column. This is a simple table as we always get in Oracle's default scott schema.
Now I loaded data using the COPY command and issued query Select * from emp order by empno but I was surprised that CQL did not allow Order by on empno column (which is PK). Also when I used Where condition, it did not allow any inequality operations on empno column (it said only EQ or IN conditions are allowed). It also did not allowed Where and Order by on any other column, as they were not used in PK, and did not have an index.
Can someone please help me what should I do if I want to keep empno unique in the table and want a query results in Sorted order of empno?
(My version is:
cqlsh:demodb> show version
[cqlsh 5.0.1 | Cassandra 2.2.0 | CQL spec 3.3.0 | Native protocol v4]
)
There are two parts to a PRIMARY KEY in Cassandra:
partition key(s)
clustering key(s)
PRIMARY KEY (partitionKey1,clusteringKey1,clusteringKey2)
or
PRIMARY KEY ((partitionKey1,partitionKey2),clusteringKey1,clusteringKey2)
The partition key determines which node(s) your data is stored on. The clustering key determines the order of the data within your partition key.
In CQL, the ORDER BY clause is really only used to reverse the defined sort direction of your clustering order. As for the columns themselves, you can only specify the columns defined (and in that exact order...no skipping) in your CLUSTERING ORDER BY clause at table creation time. So you cannot pick arbitrary columns to order your result set at query-time.
Cassandra achieves performance by using the clustering keys to sort your data on-disk, thereby only returning ordered rows in a single read (no random reads). This is why you must take a query-based modeling approach (often duplicating your data into multiple query tables) with Cassandra. Know your queries ahead of time, and build your tables to serve them.
Select * from emp order by empno;
First of all, you need a WHERE clause. It's ok to query without it, if you're working with a relational database. With Cassandra, you should do your best to avoid unbound SELECT queries. Besides, Cassandra can only enforce a sort order within a partition, so querying without a WHERE clause won't return data in the order you want, anyway.
Secondly, as I mentioned above, you need to define clustering keys. If you want to order your result set by empno, then you must find another column to define as your partition key. Try something like this:
CREATE TABLE emp_by_dept (
empno text,
dept text,
name text,
PRIMARY KEY (dept,empno)
) WITH CLUSTERING ORDER BY (empno ASC);
Now, I can query employees by department, and they will be returned to me ordered by empno:
SELECT * FROM emp_by_dept WHERE dept='IT';
But to be clear, you will not be able to query every row in your table, and have it ordered by a single column. The only way to get meaningful order into your result sets, is first partition your data in a way that makes sense to your business case. Running an unbound SELECT will return all of your rows (assuming that the query doesn't time-out while trying to query every node in your cluster), but result set ordering can only be enforced within a partition. So you have to restrict by partition key in order for that to make any sense.
My apologies for self-promoting, but last year I wrote an article for DataStax called We Shall Have Order!, in which I addressed how to solve these types of problems. Give it a read and see if it helps.
Edit for additional questions:
From your answer I concluded 2 things about Cassandra:
(1) There is no
way of getting a result set which is only order by a column that has
been defined as Unique.
(2) When we define a PK
(partition-key+clustering-key), then the results will always be order
by Clustering columns within any fixed partition key (we must restrict
to one partition-key value), that means there is no need of ORDER BY
clause, since it cannot ever change the order of rows (the order in
which rows are actually stored), i.e. Order By is useless.
1) All PRIMARY KEYs in Cassandra are unique. There's no way to order your result set by your partition key. In my example, I order by empno (after partitioning by dept). – Aaron 1 hour ago
2) Stopping short of saying that ORDER BY is useless, I'll say that its only real use is to switch your sort direction between ASC and DESC.
I created an index on "empno" column of "emp" table, it is still not
allowing ORDER BY empno. So, what Indexes are for? are they only for
searching records for specific value of index key?
You cannot order a result set by an indexed column. Secondary indexes are (not the same as their relational counterparts) really only useful for edge-case, analytics-based queries. They don't scale, so the general recommendation is not to use secondary indexes.
Ok, that simply means that one table cannot be used for getting
different result sets with different conditions and different sorting
order.
Correct.
Hence for each new requirement, we need to create a new table.
IT means if we have a billion rows in a table (say Sales table), and
we need sum of sales (1) Product-wise, (2) Region-wise, then we will
duplicate all those billion rows in 2 tables with one in clustering
order of Product, the other in clustering order of Region,. and even
if we need to sum sales per Salesman_id, then we build a 3rd table,
again putting all those billion rows? is it sensible?
It's really up to you to decide how sensible it is. But lack of query flexibility is a drawback of Cassandra. To get around it you can keep creating query tables (I.E., trading disk for performance). But if it gets to a point where it becomes ungainly or difficult to manage, then it's time to think about whether or not Cassandra is really the right solution.
EDIT 20160321
Hi Aaron, you said above "Stopping short of saying that ORDER BY is useless, I'll say that its only real use is to switch your sort direction between ASC and DESC."
But i found even that is not correct. Cassandra only allows ORDER by in the same direction as we define in the "CLUSTERING ORDER BY" caluse of CREATE TABLE. If in that clause we define ASC, it allows only order by ASC, and vice versa.
Without seeing an error message, it's hard to know what to tell you on that one. Although I have heard of queries with ORDER BY failing when you have too many rows stored in a partition.
ORDER BY also functions a little odd if you specify multiple columns to sort by. If I have two clustering columns defined, I can use ORDER BY on the first column indiscriminately. But as soon as I add the second column to the ORDER BY clause, my query only works if I specify both sort directions the same (as the CLUSTERING ORDER BY definition) or both different. If I mix and match, I get this:
InvalidRequest: code=2200 [Invalid query] message="Unsupported order by relation"
I think that has to do with how the data is stored on-disk. Otherwise Cassandra would have more work to do in preparing result sets. Whereas if it requires everything to either to match or mirror the direction(s) specified in the CLUSTERING ORDER BY, it can just relay a sequential read from disk. So it's probably best to only use a single column in your ORDER BY clause, for more predictable results.
Adding a redux answer as the accepted one is quite long.
Order by is currently only supported on the clustered columns of the PRIMARY KEY
and when the partition key is restricted by an Equality or an IN operator in where clause.
That is if you have your primary key defined like this :
PRIMARY KEY ((a,b),c,d)
Then you will be able to use the ORDER BY when & only when your query has :
a where clause with all the primary key restricted either by an equality operator (=) or an IN operator such as :
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY c,d;
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY c;
These two query are the only valid ones.
Also this query would not work :
SELECT * FROM emp WHERE a = 1 AND b = 'India' ORDER BY d,c;
because order by currently only support the ordering of columns following their declared order in the PRIMARY KEY that is in primary key definition c has been declared before d and the query violates the ordering by placing d first.

cassandra filtering on an indexed column isn't working

I'm using (the latest version of) Cassandra nosql dbms to model some data.
I'd like to get a count of the number of active customer accounts in the last month.
I've created the following table:
CREATE TABLE active_accounts
(
customer_name text,
account_name text,
date timestamp,
PRIMARY KEY ((customer_name, account_name))
);
So because I want to filter by date, I create an index on the date column:
CREATE INDEX ON active_accounts (date);
When I insert some data, Cassandra automatically updates data on any existing primary key matches, so the following inserts only produce two records:
insert into active_accounts (customer_name, account_name, date) Values ('customer2', 'account2', 1418377413000);
insert into active_accounts (customer_name, account_name, date) Values ('customer1', 'account1', 1418377413000);
insert into active_accounts (customer_name, account_name, date) Values ('customer2', 'account2', 1418377414000);
insert into active_accounts (customer_name, account_name, date) Values ('customer2', 'account2', 1418377415000);
This is exactly what I'd like - I won't get a huge table of data, and each entry in the table represents a unique customer account - so no need for a select distinct.
The query I'd like to make - is how many distinct customer accounts are active within the last month say:
Select count(*) from active_accounts where date >= 1418377411000 and date <= 1418397411000 ALLOW FILTERING;
In response to this query, I get the following error:
code=2200 [Invalid query] message="No indexed columns present in by-columns clause with Equal operator"
What am I missing; isn't this the purpose of the Index I created?
Table design in Cassandra is extremely important and it must match the kind of queries that you are trying to preform. The reason that Cassandra is trying to keep you from performing queries on the date column, is that any query along that column will be extremely inefficient.
Table Design - Model your queries
One of the main reasons that Cassandra can be fast is that it partitions user data so that most( 99%)
of queries can be completed without contacting all of the nodes in the cluster. This means less network traffic, less disk access, and faster response time. Unfortunately Cassandra isn't able to determine automatically what the best way to partition data. The end user must determine a schema which fits into the C* datamodel and allows the queries they want at a high speed.
CREATE TABLE active_accounts
(
customer_name text,
account_name text,
date timestamp,
PRIMARY KEY ((customer_name, account_name))
);
This schema will only be efficient for queries that look like
SELECT timestamp FROM active_accounts where customer_name = ? and account_name = ?
This is because on the the cluster the data is actually going to be stored like
node 1: [ ((Bob,1)->Monday), ((Tom,32)->Tuesday)]
node 2: [ ((Candice, 3) -> Friday), ((Sarah,1) -> Monday)]
The PRIMARY KEY for this table says that data should be placed on a node based on the hash of the combination of CustomerName and AccountName. This means we can only look up data quickly if we have both of those pieces of data. Anything outside of that scope becomes a batch job since it requires hitting multiple nodes and filtering over all the data in the table.
To optimize for different queries you need to change the layout of your table or use a distributed analytics framework like Spark or Hadoop.
An example of a different table schema that might work for your purposes would be something like
CREATE TABLE active_accounts
(
start_month timestamp,
customer_name text,
account_name text,
date timestamp,
PRIMARY KEY (start_month, date, customer_name, account_name)
);
In this schema I would put the timestamp of the first day of the month as the partitioning key and date as the first clustering key. This means that multiple account creations that took place in the same month will end up in the same partition and on the same node. The data for a schema like this would look like
node 1: [ (May 1 1999) -> [(May 2 1999, Bob, 1), (May 15 1999,Tom,32)]
This places the account dates in order within each partition making it very fast for doing range slices between particular dates. Unfortunately you would have to add code on the application side to pull down the multiple months that a query might be spanning. This schema takes a lot of (dev) work so if these queries are very infrequent you should use a distributed analytics platform instead.
For more information on this kind of time-series modeling check out:
http://planetcassandra.org/getting-started-with-time-series-data-modeling/
Modeling in general:
http://www.slideshare.net/planetcassandra/cassandra-day-denver-2014-40328174
http://www.slideshare.net/johnny15676/introduction-to-cql-and-data-modeling
Spark and Cassandra:
http://planetcassandra.org/getting-started-with-apache-spark-and-cassandra/
Don't use secondary indexes
Allow filtering was added to the cql syntax to prevent users from accidentally designing queries that will not scale. The secondary indexes are really only for use by those do analytics jobs or those C* users who fully understand the implications. In Cassandra the secondary index lives on every node in your cluster. This means that any query that requires a secondary index necessarily will require contacting every node in the cluster. This will become less and less performant as the cluster grows and is definitely not something you want for a frequent query.

Resources