I am trying to detect moving object and remove shadow from a video that has a static background. I am using Mixture of Gaussians(MOG) method to detect moving objects. I am using opencv3 and python 3.5. How can I remove shadows from the video and foreground mask both? I have used erosion and dilation for reducing noise. But it doesn't remove the shadows.
import cv2
import numpy as np
cap = cv2.VideoCapture('TownCentreXVID.avi')
fgbg = cv2.createBackgroundSubtractorMOG2()
while(1):
_, frame = cap.read()
mask = fgbg.apply(frame)
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
window = cv2.namedWindow('Original', cv2.WINDOW_NORMAL| cv2.WINDOW_KEEPRATIO )
window = cv2.namedWindow('Mask', cv2.WINDOW_NORMAL| cv2.WINDOW_KEEPRATIO)
window = cv2.namedWindow('Opening', cv2.WINDOW_NORMAL| cv2.WINDOW_KEEPRATIO )
#window = cv2.namedWindow('Closing', cv2.WINDOW_NORMAL| cv2.WINDOW_KEEPRATIO)
cv2.imshow('Original',frame)
cv2.imshow('Mask',thresh)
cv2.imshow('Opening',opening)
#cv2.imshow('Closing',closing)
k = cv2.waitKey(5) & 0xFF
if k == 27:
break
cv2.destroyAllWindows()
cap.release()
The backgroundsubtractor returns a mask where foreground object are white and shadows are gray.
You can use thresholding to create a new mask without shadow, or with only the shadow.
Use the mask without the shadows to get only the foreground.
Use the mask with only shadow to replace the shadow on the background (with a reference background image).
Result:
Code:
import cv2
import numpy as np
# load image / mask
mask = cv2.imread("mask.png",0)
#threshold mask
ret, foreground = cv2.threshold(mask, 200, 255, cv2.THRESH_BINARY)
ret, shadow = cv2.threshold(mask, 200, 255, cv2.THRESH_TOZERO_INV)
# stack images vertically
res = np.concatenate((mask,foreground,shadow),axis=0)
#show image
cv2.imshow("Result",res)
cv2.waitKey(0)
cv2.destroyAllWindows()
Related
import cv2
import numpy as np
import pyautogui
SCREEN_SIZE = (1920, 1080)
#define the codec
fourcc = cv2.VideoWriter_fourcc(*"XVID")
#create the video write object
out = cv2.VideoWriter("output.avi", fourcc, 20.0, (SCREEN_SIZE))
while True:
#make a screenshot
img = pyautogui.screenshot(region=(680, 785, 560, 20))
#convert these pixels to a proper numpy array to work with OpenCV
frame = np.array(img)
#convert colors from BGR to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
black = [0,0,0]
for x in range(img.width):
for y in range(img.height):
if img.getpixel((x, y)) == black:
print(x, y)
pyautogui.click(x, y)
#write the frame
out.write(frame)
#show the frame
cv2.imshow("screenshot", frame)
# if the user clicks q, it exits
if cv2.waitKey(1) == ord("q"):
break
# make sure everything is closed when exited
cv2.destroyAllWindows()
out.release()
I am creating a script to detect black squares, and click them. For some reason when using this, there is no error, but it is not clicking. Is there a way to tell whether it is detecting the color/clicking?
Edit: It does not output the coordinates, and when changing it to print "black" once finding the color, there is still no output.
Input Image I am trying to remove background gridlines from scanned images using OpenCV, till now I have used HoughLine methods to detect lines and fill it with white color.
By this method I'm able to detect horizonal lines but not vertical lines.
Here is my code
'''
import cv2
import numpy as np
def rmv_lines(Image_Path):
img = cv2.imread(Image_Path)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
minLineLength, maxLineGap = 100, 15
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength,maxLineGap)
for x in range(0, len(lines)):
for x1,y1,x2,y2 in lines[x]:
#if x1 != x2 and y1 != y2:
cv2.line(img,(x1,y1),(x2,y2),(255,255,255),4)
return cv2.imwrite('removed.jpg',img)
'''
Any help or suggestion...
Any Linux or Mac OS equivalent libraries to Win32gui, or to this code ?
working on an outside project and this windows code will help me grab the screen. Havent been able to find any libraries that are similar. Thank you
def grab_screen(region=None):
hwin = win32gui.GetDesktopWindow()
if region:
left,top,x2,y2 = region
width = x2 - left + 1
height = y2 - top + 1
else:
width = win32api.GetSystemMetrics(win32con.SM_CXVIRTUALSCREEN)
height = win32api.GetSystemMetrics(win32con.SM_CYVIRTUALSCREEN)
left = win32api.GetSystemMetrics(win32con.SM_XVIRTUALSCREEN)
top = win32api.GetSystemMetrics(win32con.SM_YVIRTUALSCREEN)
hwindc = win32gui.GetWindowDC(hwin)
srcdc = win32ui.CreateDCFromHandle(hwindc)
memdc = srcdc.CreateCompatibleDC()
bmp = win32ui.CreateBitmap()
bmp.CreateCompatibleBitmap(srcdc, width, height)
memdc.SelectObject(bmp)
memdc.BitBlt((0, 0), (width, height), srcdc, (left, top), win32con.SRCCOPY)
signedIntsArray = bmp.GetBitmapBits(True)
img = np.fromstring(signedIntsArray, dtype='uint8')
img.shape = (height,width,4)
srcdc.DeleteDC()
memdc.DeleteDC()
win32gui.ReleaseDC(hwin, hwindc)
win32gui.DeleteObject(bmp.GetHandle())
return cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
You can grab the screen with pyautogui:
import pyautogui
image = pyautogui.screenshot('filename.png')
You can do this :)
I think Mac OS can't use those WiIn32gui libraries.
instead you can use pillow for grabbing screen.
Screen size can be changed depends on the size you want.
import cv2
import numpy as np
import pyautogui
from PIL import ImageGrab
screen_w = 1920
screen_h = 1080
while True:
rgb = ImageGrab.grab(bbox=(0, 0, screen_w, screen_h))
rgb = np.array(rgb)
cv2.imshow('window_frame', rgb)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
Is it possible to fill the image outside that bounding window with some colour like we do in paint with bucket fill using opencv,python
You can use flood fill to do that. You'll first need a mask to segment out the rectangle from your image.
First make a mask to segment out the rectangle. I did it by simple gray threshold. Once you have the mask, fill the roi with image and the rest with the color you want.
Code:
import cv2
import numpy as np
img = cv2.imread("face.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
h,w =img.shape[:2]
mask = np.zeros((h+2, w+2), np.uint8)
ret,thresh2 = cv2.threshold(gray, 10,255,cv2.THRESH_BINARY_INV)
cv2.floodFill(thresh2, mask, (350,250), (255,255,0));
thresh2 = cv2.cvtColor(thresh2,cv2.COLOR_GRAY2RGB)
thresh2[np.where((thresh2 == [0,0,0]).all(axis = 2))] = [0,255,255]
thresh2[np.where((thresh2 == [255,255,255]).all(axis=2))] = img[np.where((thresh2 == [255,255,255]).all(axis=2))]
cv2.imshow("img", thresh2)
cv2.waitKey(0)
cv2.destroyAllWindows()
ALL CREDITS TO I.NEWTON orwhatever his actual name is.. ;)
img = cv2.imread(f)
size=img.shape
dets1 = detector1(img)
for k1, d1 in enumerate(dets1):
x1=d1.left()
y1=d1.top()
w1=d1.right()
h1=d1.bottom()
cv2.rectangle(img,(x1,y1),(w1,h1),(0,0,0),1)
cv2.rectangle(img,(0,0),(x1,size[1]),(0,0,0),-1)
cv2.rectangle(img,(0,0),(size[1],y1),(0,0,0),-1)
cv2.rectangle(img,(size[1],0),(w1,size[0]),(0,0,0),-1)
img=cv2.rectangle(img,(size[1],size[0]),(0,h1),(0,0,0),-1)
cv2.imshow("img", thresh2)
cv2.waitKey(0)
cv2.destroyAllWindows()
Hey everybody i have some trouble using opencv 3.x and python 3.x.
What i want to do is to draw a basic rectangle in a picture but the rectangle will never be drawn.
I read this similar thread but it doesn't helped me with my fault.
Python OpenCV: mouse callback for drawing rectangle
It would be nice if someone could give me a hint.
#!/usr/bin/env python3
import cv2
import numpy as np
Path = 'picture.jpg'
image_float_size = 400.0
image_int_size = int(image_float_size)
color = [0,255,0]
rectangle = False
def on_event(event,x,y,flags,param):
global startpointx,startpointy,rectangle
if event == cv2.EVENT_LBUTTONDOWN:
rectangle = True
startpointx = x
startpointy = y
print('Down',x,y) #debugging
cv2.rectangle(resized,(x,y),(x,y),(0,255,0),-1)
elif event == cv2.EVENT_LBUTTONUP:
rectangle = False
print('Up',x,y)
cv2.rectangle(resized,(startpointx,startpointy),(x,y),(0,255,0),-1)
elif event == cv2.EVENT_MOUSEMOVE:
if rectangle:
print('Move',startpointx,startpointy,x,y)#debugging
cv2.rectangle(resized,(startpointx,startpointy),(x,y),(0,255,0),-1)
# Read the image and convert it into gray
image = cv2.imread(Path)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# resize the image
ration = image_float_size / gray_image.shape[1]
dim = (image_int_size,int(gray_image.shape[0]*ration))
resized = cv2.resize(gray_image, dim, interpolation = cv2.INTER_AREA)
# set window for the image
cv2.namedWindow('window')
# mouse callback
cv2.setMouseCallback('window',on_event)
# wait forever for user to press any key, after key pressed close all windows
while True:
cv2.imshow('window',resized)
if cv2.waitKey(0):
break
cv2.destroyAllWindows()
You perform drawing (displaying of an image by using cv2.imshow) only once because cv2.waitKey(0) waits indefinitely. If you use some non-zero argument it will wait for that number of milliseconds. But notice that you're constantly rewriting/modifying an image. This is probably not what you want. I think you need to create a temporary (drawing) copy of an image first and restore it each time from original one before new drawing (rectangle).
#!/usr/bin/env python3
import cv2
import numpy as np
Path = 'data/lena.jpg'
image_float_size = 400.0
image_int_size = int(image_float_size)
color = [0,255,0]
rectangle = False
def on_event(event,x,y,flags,param):
global draw_image
global startpointx,startpointy,rectangle
if event == cv2.EVENT_LBUTTONDOWN:
rectangle = True
startpointx = x
startpointy = y
print('Down',x,y) #debugging
draw_image = resized.copy()
cv2.rectangle(draw_image,(x,y),(x,y),(0,255,0))
elif event == cv2.EVENT_LBUTTONUP:
rectangle = False
print('Up',x,y)
draw_image = resized.copy()
cv2.rectangle(draw_image,(startpointx,startpointy),(x,y),(0,255,0))
elif event == cv2.EVENT_MOUSEMOVE:
if rectangle:
print('Move',startpointx,startpointy,x,y)#debugging
draw_image = resized.copy()
cv2.rectangle(draw_image,(startpointx,startpointy),(x,y),(0,255,0))
# Read the image and convert it into gray
image = cv2.imread(Path)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# resize the image
ration = image_float_size / gray_image.shape[1]
dim = (image_int_size,int(gray_image.shape[0]*ration))
resized = cv2.resize(gray_image, dim, interpolation = cv2.INTER_AREA)
draw_image = resized.copy()
# set window for the image
cv2.namedWindow('window')
# mouse callback
cv2.setMouseCallback('window',on_event)
while True:
cv2.imshow('window', draw_image)
ch = 0xFF & cv2.waitKey(1)
if ch == 27:
break
cv2.destroyAllWindows()