I ran keras model.fit() and it stopped - keras

I ran this code but it didn't work. it was not error. in Jupyter notebook, It is still running (marked as In [*])
This is my jupyter notebook
_________________________________
In [*]: model.fit(
img_vector, y,
batch_size=128,
epochs=10,
verbose=2
)
___________________________
WARNING:tensorflow:From C:\Users\il357\Anaconda3\envs\mlbook\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/10
Epoch 1/10 is marked but that's all.
I will write down previous code. I will omit importing code. (It is Deeplearning cookbook's code. you can find it in github.
and This code is running on my laptop.)
# The number of image files is very large.. I think this maybe is the problem.
pet_images_fn = [fn for fn in os.listdir('pet_images') if fn.endswith('.jpg')]
# make image vector
labels = []
idx_to_labels = []
label_to_idx = {}
for fn in pet_images_fn:
label, _ = fn.rsplit('_', 1)
if not label in label_to_idx:
label_to_idx[label] = len(idx_to_labels)
idx_to_labels.append(label)
labels.append(label_to_idx[label])
len(idx_to_labels)
def fetch_pet(pet):
img = image.load_img('pet_images/' + pet, target_size=(299, 299))
return image.img_to_array(img)
img_vector = np.asarray([fetch_pet(pet) for pet in pet_images_fn])
# make model with InceptionV3
base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(299, 299, 3))
for layer in base_model.layers:
layer.trainable = False
pool_2d = GlobalAveragePooling2D(name='pool_2d')(base_model.output)
dense = Dense(1024, name='dense', activation='relu')(pool_2d)
predictions = Dense(len(idx_to_labels), activation='softmax')(dense)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
# set label to one hot encoding
y = np.zeros((len(labels), len(idx_to_labels)))
for idx, label in enumerate(labels):
y[idx][label] = 1
model.fit(
img_vector, y,
batch_size=128,
epochs=15,
verbose=2
)

verbose=2in model.fit means it will only print one line after the epoch finishes, if you want the progress bar you should setverbose=1.

Related

fit keras.model from generator_function

TF 2.x - just for the experience I tried with a simple experimental dataset - to show the problem:
import numpy as np
import tensorflow as tf
import keras
from tensorflow.keras.callbacks import LambdaCallback
import tensorflow_datasets as tfds
data, info = tfds.load('iris', split='train[:80%]',
as_supervised=True, with_info=True)
print(info)
features, labels = tuple(zip(*data))
# NB: the generator should yield a dictionary for the inputs, and the output as is.
def gen(x_train, y_train):
print('generator initiated')
(x_train, y_train)= tfds.load('iris', shuffle_files=True, as_supervised=True, with_info=True)
idx = 0
while True:
yield tf.transpose([x_train[:32], tf.one_hot(y_train[:32])])
print('generator yielded a batch %d' % idx)
idx += 1
train_ds = tf.data.Dataset.from_generator(gen, args=(features, labels),
output_types=(tf.float32, tf.int32),
output_shapes=(tf.TensorShape([32,4]), tf.TensorShape([32,4 ])),
)
# OR
#output_signature=(
# tf.TensorSpec(shape=(4,), dtype=tf.float32),
# tf.TensorSpec(shape=(), dtype=tf.int32)),
#)
# datasetGen = iter(train_ds)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(512, activation='relu', input_shape=(32,4,))) # 4 fields
model.add(tf.keras.layers.Dense(4, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
train_ds= train_ds.batch(32).prefetch(32)
# callbacks=[LambdaCallback(on_epoch_end=generator.on_epoch_end)],
history= model.fit(train_ds, epochs = 7, verbose = 1)
print(history.history['accuracy'])
& am getting :
In ln: yield tf.transpose([x_train[:32], tf.one_hot(y_train[:32])])
TypeError: unhashable type: 'slice'
problem seems to be here - x_train[:32] ?
Q ?? how to make corrections to the code (either to the generator-func? or to the output_signature? or to the input_shape=? or somewhere else) to be able to use Dataset in model.fit() method ?
(sorry for dummy example, but I'd like to test generator-func use in model.fit())
well, it was really a dummy example of generator use; & moreover tf.data always win in speed compared with generator use. Nevertheless, such works (code also needs refactoring - e.g. or organizing pipelines for BigData - e.g.)
import tensorflow as tf
import numpy as np
import pandas as pd
# LOAD DATA
df= pd.read_csv('https://gist.githubusercontent.com/netj/8836201/raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv', dtype = 'float32', converters = {'variety' : str},
nrows=64, decimal='.')
# df.head()
_features=df.iloc[:,:4].copy()
_labels=df.iloc[:,-1:].copy()
_labels['variety1'] = pd.factorize(_labels['variety'])[0]
_target= _labels['variety1'].astype(np.int64).copy()
_targets= _target[:,np.newaxis]
#print(_features)
print(type(_targets))
# SPLIT for Train & Test
# https://www.kdnuggets.com/2020/07/getting-started-tensorflow2.html
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(_features,_targets, test_size=0.3)
# Typically, we normalize the data when we have a high amount of variance in it.
print(X_train.var())
print(X_test.var())
# Here we can see that both X_train and X_test have very low variance, so no need to normalize the data.
# PREPROCESSING
#
# to_categorical
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)
print(y_train[:5,:])
# convert our data to numpy arrays
X_train = X_train.values
X_test = X_test.values
#################################################
#################################################
def gen(_features, _labels):
x_train= _features
y_train= _labels
#print('gen:\n', list(x_train))
#print('gen:\n', list(y_train))
idx = 0
while idx<64:
yield x_train[:32], y_train[:32]
print('generator yielded a batch %d' % idx)
idx += 1
#################################################
# train_ds <<<<<<<<<<<<<<<<<<<<<<<
train_ds = tf.data.Dataset.from_generator(gen, args=(X_train, y_train),
output_types=(tf.float32, tf.int64),
output_shapes=(tf.TensorShape([32,4]), tf.TensorShape([32, 2 ])),
)
# OR
#output_signature=(
# tf.TensorSpec(shape=(4,), dtype=tf.float32),
# tf.TensorSpec(shape=(), dtype=tf.int32)),
#)
# datasetGen = iter(train_ds)
# print('train_ds:\n',list(train_ds.as_numpy_iterator()))
#################################################
# Model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense((512), activation='relu', input_shape=(32,4 ))) # 4 fields
model.add(tf.keras.layers.Dense((2), activation='softmax'))
# INSTEAD OF ONE-HOT CAN USE sparse_categorical_crossentropy HERE
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
train_ds= train_ds.batch(32).prefetch(32)
# callbacks=[LambdaCallback(on_epoch_end=generator.on_epoch_end)],
history= model.fit(train_ds, epochs = 7, verbose = 1)
validation_ ds from source X_test, y_test formed with tf.data.Dataset.from_tensor_slices() have problems with shape (4,) instead of model's input shape (32,4,) - but it is of the inappropriate generator's task at all from the very beginningg, I think... though with train_ds evaluate() & predict() methods works (though that is not the task of ML)
##############################################
score = model.evaluate(train_ds, batch_size=32, verbose=1) # test_ds needed
print("Test Accuracy:", score[1])
y_pred = model.predict(train_ds)
print('PREDICTIONS:\n', y_pred)
##############################################
#https://medium.com/#nutanbhogendrasharma/tensorflow-deep-learning-model-with-iris-dataset-8ec344c49f91
#Print actual and predicted value
features, labels = tuple(zip(*train_ds)) # If you need the numpy array version, convert them using np.array(): # https://stackoverflow.com/a/65499385/15893581
actual = np.argmax(labels,axis=-1)
predicted = np.argmax(y_pred,axis=-1)
print(f"Actual: {actual}")
print(f"Predicted: {predicted}")
So, incoming test_ds e.g. still needs to be adopted (though better to adopt gen_func here, I think), but overall idea of using generator in TF 2.x is clear now (only if will be used for huge data)...
P.S.
and advice to improve the model here
I apologize for this dummy question, as I'm still a novice in ML, but needed to connect somehow generator & training for the experience
Finally I generated iris_dataset from function (really, not quick operation)... some attention stll needed else to repeat-fn, but code-design in general works (for really random data)
# Importing the tensorflow library
import tensorflow as tf
import numpy as np
import keras
#FeaturesDict({
# 'features': Tensor(shape=(4,), dtype=tf.float32),
# 'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=3),
#})
BATCH_SIZE= 12
EPOCHS = 7
QTY_BATCHES= 10 # to be generated
# The Dataset.from_generator constructor converts the python generator to a fully functional tf.data.Dataset.
def gen():
for i in range(BATCH_SIZE):
# should yield a pair Features - Label
data= np.expand_dims(np.random.sample(4) , axis=0)
label= [np.random.randint(3)]
yield data, label
train_ds = tf.data.Dataset.from_generator(gen,
(tf.float32, tf.int32),
(tf.TensorShape([None,4]),
tf.TensorShape([ 1])))
# Applying the Dataset.repeat() transformation with no arguments will repeat the input indefinitely.
# The Dataset.repeat transformation concatenates its arguments without signaling the end of one epoch and the beginning of the next epoch. Because of this a Dataset.batch applied after Dataset.repeat will yield batches that straddle epoch boundaries:
train_ds= train_ds.repeat(count= EPOCHS*BATCH_SIZE*QTY_BATCHES).batch(BATCH_SIZE, drop_remainder=True).prefetch(BATCH_SIZE)
NUM_CLASSES= 3
train_ds = train_ds.map(lambda x, y: (x, tf.one_hot(y, depth=NUM_CLASSES)))
for x, y in train_ds:
print(x)
print(y)
# Build a simple linear model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu', input_shape=(None,4))) # unknown(variable) batch_size, 4 fields
model.add(tf.keras.layers.Dense(3, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
# steps_per_epoch = int( np.ceil(x_train.shape[0] / batch_size) )
# The Steps per epoch denote the number of batches to be selected for one epoch. If 500 steps are selected then the network will train for 500 batches to complete one epoch.
history= model.fit(train_ds, batch_size=BATCH_SIZE, epochs= EPOCHS, \
steps_per_epoch= (QTY_BATCHES*BATCH_SIZE)//BATCH_SIZE, \
verbose = 1)
print(history.history['accuracy'])
print(history.history['loss'])
# Keras - Plot training, validation and test set accuracy
# https://stackoverflow.com/questions/41908379/keras-plot-training-validation-and-test-set-accuracy
import keras
from matplotlib import pyplot as plt
plt.plot(history.history['accuracy'])
#plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
#plt.legend(['train', 'val'], loc='upper left')
plt.legend(['train'], loc='upper left')
plt.show()
plt.plot(history.history['loss'])
# plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
# plt.legend(['train', 'val'], loc='upper left')
plt.legend(['train'], loc='upper left')
plt.show()
ok, I'v got working case for the initial Dataset:
import numpy as np
import tensorflow as tf
import keras
from tensorflow.keras.callbacks import LambdaCallback
import tensorflow_datasets as tfds
data, info = tfds.load('iris', split='train[:100%]', batch_size=10, as_supervised=True, with_info=True)
print(info)
NUM_CLASSES= info.features["label"].num_classes
data = data.map(lambda x, y: (x, tf.one_hot(y, depth=NUM_CLASSES)))
features, labels = tuple(zip(*data))
print(features)
print(labels)
# NB: the generator should yield a dictionary for the inputs, and the output as is.
def gen(x_train, y_train):
print('generator initiated')
print(x_train.shape)
print(y_train.shape)
idx = 0
while True:
yield x_train, y_train
print('generator yielded a batch %d' % idx)
idx += 1
train_ds = tf.data.Dataset.from_generator(gen, args=(features, labels),
output_types=(tf.float32, tf.int32),
output_shapes=(tf.TensorShape([None,10,4]), tf.TensorShape([ None, 10, 3 ])),
)
# OR (better! because prev. is Deprecated)
#output_signature=(
# tf.TensorSpec(shape=(4,), dtype=tf.float32),
# tf.TensorSpec(shape=(), dtype=tf.int32)),
#)
#it = iter(train_ds)
#print(it.get_next())
for feature, label in train_ds:
print("shape of ds_generated: ", feature.shape,label.shape)
break
#num_val = len(train_ds) # TypeError: The dataset length is unknown. BECAUSE it is FLOW
#print(num_val)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(512, activation='relu', input_shape=(None,10,4))) # 4 fields
model.add(tf.keras.layers.Dense(3, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
train_ds= train_ds.batch(32).prefetch(32)
# callbacks=[LambdaCallback(on_epoch_end=generator.on_epoch_end)],
history= model.fit(train_ds, epochs = 2, steps_per_epoch= 120 // 10, verbose = 1)
print(history.history['accuracy'])
one-hot encoding I've moved out of gen_func-scope
divided DS for features & labels
! gave correct input_shape to model (& appropriate shape changes in gen_func) - according [variable_rows_count_in_batch, batch_size, columns_features]
verbose = 1 for readable Debug in MT env.
advice from here
to define a variable batch size with None and setting the
steps_per_epoch
-- still not helps if taking split='train[:50%]' and steps_per_epoch= 60 // 10, -- as for unfully filled LAST batch -- the source of problem in my code IS in gen_func output_shapes -- that is clear here, because gen_func really was got dummy for testing purposes...
for real cases use Logical Output ! and appropriate Shapes
P.S.
though for 5 epochs I am getting:
Graph execution error: >> ZMQError: Too many open file
AttributeError: '_thread._local' object has no attribute 'event_pipe'
-- ! probably, NOT enough memory to finish training !... - decreasing output in Dense(512,..) HELPS (as well as decreasing number of epochs)

Calculate gradient of validation error w.r.t inputs using Keras/Tensorflow or autograd

I need to calculate the gradient of the validation error w.r.t inputs x. I'm trying to see how much the validation error changes when I perturb one of the training samples.
The validation error (E) explicitly depends on the model weights (W).
The model weights explicitly depend on the inputs (x and y).
Therefore, the validation error implicitly depends on the inputs.
I'm trying to calculate the gradient of E w.r.t x directly.
An alternative approach would be to calculate the gradient of E w.r.t W (can easily be calculated) and the gradient of W w.r.t x (cannot do at the moment), which would allow the gradient of E w.r.t x to be calculated.
I have attached a toy example. Thanks in advance!
import numpy as np
import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.utils import to_categorical
import tensorflow as tf
from autograd import grad
train_images = mnist.train_images()
train_labels = mnist.train_labels()
test_images = mnist.test_images()
test_labels = mnist.test_labels()
# Normalize the images.
train_images = (train_images / 255) - 0.5
test_images = (test_images / 255) - 0.5
# Flatten the images.
train_images = train_images.reshape((-1, 784))
test_images = test_images.reshape((-1, 784))
# Build the model.
model = Sequential([
Dense(64, activation='relu', input_shape=(784,)),
Dense(64, activation='relu'),
Dense(10, activation='softmax'),
])
# Compile the model.
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'],
)
# Train the model.
model.fit(
train_images,
to_categorical(train_labels),
epochs=5,
batch_size=32,
)
model.save_weights('model.h5')
# Load the model's saved weights.
# model.load_weights('model.h5')
calculate_mse = tf.keras.losses.MeanSquaredError()
test_x = test_images[:5]
test_y = to_categorical(test_labels)[:5]
train_x = train_images[:1]
train_y = to_categorical(train_labels)[:1]
train_y = tf.convert_to_tensor(train_y, np.float32)
train_x = tf.convert_to_tensor(train_x, np.float64)
with tf.GradientTape() as tape:
tape.watch(train_x)
model.fit(train_x, train_y, epochs=1, verbose=0)
valid_y_hat = model(test_x, training=False)
mse = calculate_mse(test_y, valid_y_hat)
de_dx = tape.gradient(mse, train_x)
print(de_dx)
# approach 2 - does not run
def calculate_validation_mse(x):
model.fit(x, train_y, epochs=1, verbose=0)
valid_y_hat = model(test_x, training=False)
mse = calculate_mse(test_y, valid_y_hat)
return mse
train_x = train_images[:1]
train_y = to_categorical(train_labels)[:1]
validation_gradient = grad(calculate_validation_mse)
de_dx = validation_gradient(train_x)
print(de_dx)
Here's how you can do this. Derivation is as below.
Few things to note,
I have reduced the feature size from 784 to 256 as I was running out of memory in colab (line marked in the code) . Might have to do some mem profiling to find out why
Only computed grads for the first layer. Easily extendable to other layers
Disclaimer: this derivation is correct to best of my knowledge. Please do some research and verify that it is the case. You will run into memory issues for larger inputs and layer sizes.
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.utils import to_categorical
import tensorflow as tf
f = 256
model = Sequential([
Dense(64, activation='relu', input_shape=(f,)),
Dense(64, activation='relu'),
Dense(10, activation='softmax'),
])
# Compile the model.
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'],
)
w = model.weights[0]
# Inputs and labels
x_tr = tf.Variable(np.random.normal(size=(1,f)), shape=(1, f), dtype='float32')
y_tr = np.random.choice([0,1,2,3,4,5,6,7,8,9], size=(1,1))
y_tr_onehot = tf.keras.utils.to_categorical(y_tr, num_classes=10).astype('float32')
x_v = tf.Variable(np.random.normal(size=(1,f)), shape=(1, f), dtype='float32')
y_v = np.random.choice([0,1,2,3,4,5,6,7,8,9], size=(1,1))
y_v_onehot = tf.keras.utils.to_categorical(y_v, num_classes=10).astype('float32')
# In the context of GradientTape
with tf.GradientTape() as tape1:
with tf.GradientTape() as tape2:
y_tr_pred = model(x_tr)
tr_loss = tf.keras.losses.MeanSquaredError()(y_tr_onehot, y_tr_pred)
tmp_g = tape2.gradient(tr_loss, w)
print(tmp_g.shape)
# d(dE_tr/d(theta))/dx
# Warning this step consumes lot of memory for large layers
lr = 0.001
grads_1 = -lr * tape1.jacobian(tmp_g, x_tr)
with tf.GradientTape() as tape3:
y_v_pred = model(x_v)
v_loss = tf.keras.losses.MeanSquaredError()(y_v_onehot, y_v_pred)
# dE_val/d(theta)
grads_2 = tape3.gradient(v_loss, w)[tf.newaxis, :]
# Just crunching the dimension to get the final desired shape of (1,256)
grad = tf.matmul(tf.reshape(grads_2,[1, -1]), tf.reshape(tf.transpose(grads_1,[2,1,0,3]),[1, -1, 256]))

Keras EarlyStopping settings

I have built a common Unet to train my own dataset by using Keras. I have set the EarlyStopping option as follows. However, during training, it keeps prompt out the precision value dis not change but in the next line, it is apparently changing. Has anyone meet this problem before or know how to solve the problem?
enter image description here
train_iterator = create_one_shot_iterator(train_files, batch_size=train_batch_size, num_epoch=epochs)
train_images, train_masks = train_iterator.get_next()
train_images, train_masks = augment_dataset(train_images, train_masks,
augment=True,
resize=True,
scale=1 / 255.,
hue_delta=0.1,
horizontal_flip=True,
width_shift_range=0.1,
height_shift_range=0.1,
rotate=15)
val_iterator = create_initializable_iterator(val_files, batch_size=val_batch_size)
val_images, val_masks = val_iterator.get_next()
val_images, val_masks = augment_dataset(val_images, val_masks,
augment=True,
resize=True,
scale=1 / 255.,
)
model_input = tf.keras.layers.Input(tensor=train_images)
model_output = Unet.u_net_256(model_input)
# Model definition
model = models.Model(inputs=model_input, outputs=model_output)
precision = tf.keras.metrics.Precision()
model.compile(optimizer='adam',
loss=bce_dice_loss,
metrics=[precision],
target_tensors=[train_masks])
model.summary()
cp = [tf.keras.callbacks.ModelCheckpoint(filepath=os.path.join(hdf5_dir, class_name) + '.hdf5',
monitor='val_precision',
save_best_only=True,
verbose=1),
tf.keras.callbacks.TensorBoard(log_dir=log_dir,
write_graph=True,
wr`enter code here`ite_images=True),
tf.keras.callbacks.EarlyStopping(monitor='val_precision', patience=10, verbose=2, mode='max')]
History = model.fit(train_images, train_masks,
steps_per_epoch=int(np.ceil(num_train_samples / float(train_batch_size))),
epochs=epochs,
validation_data=(val_images, val_masks),
validation_steps=int(np.ceil(num_val_samples / float(val_batch_size))),
callbacks=cp,
)
The feedback message you are getting is letting you know that for the epoch just completed, no improvement in validation precision occurred. This is probably happening because you have set verbose=2 in the callback settings, which is intended to give you a heads up that if you see the message for 10 consecutive epochs, your training will end.

Keras prediction class labeling

I need help to understand Keras prediction class labeling
I am building the binary classification model with Keras. I use 3 'relu' layers plus sigmoid output, the loss function is binary_crossentropy.
The point is that I am not able to understand simple thing:
- for my y_train/y_test I use two values: False / True. When I predict on the X_test I am getting he probability or class predicted, fine. But unfortunately the model has in 50% of cases the accuracy of 0,1 and in other 50% of cases 0,9. This comes from the fact that the distribution of the False / True is uneven - 90% of False and 10% of True. ... and then, what happens is that it looks like the class label for False is 0 in half of the cases and 1 in other half of cases. I am unable to figure out why.
I found some posts saying Keras would number the classes in alphabetical order, so I assumed False would always get 0 and True 1, but this does not seem to be the case.
Please find my code below and advise what I do wrong.
# ####################### Fetch data #################################
#df = pd.read_csv(os.path.join(data_folder, data_file))
df = pd.read_csv('\\\...\\train_data_with_anomalous_column.csv', delimiter=',')
x = df.drop('ANOMALOUS', axis=1)
# x = x.drop('TIMESTAMP', axis=1)
y = df['ANOMALOUS'].copy()
x = x.as_matrix()
y = y.as_matrix()
# y.astype(int)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.1)
# ####################### get rid of TIMESTAMP columns ###############
# ###### first, copy the TIMESTAMP column into ananother np-array
# ###### in order to be able to join it later
X_test_TST = X_test[:, [0]]
X_train = np.delete(X_train, 0, 1)
X_test = np.delete(X_test, 0, 1)
class_weight = {False: 1.,
True: 1.
}
training_set_size = X_train.shape[0]
n_inputs = 22
n_h1 = args.n_hidden_1
n_h2 = args.n_hidden_2
n_h3 = args.n_hidden_3
n_outputs = 1
n_epochs = 2
model_validation_split = 0.1
batch_size = args.batch_size
learning_rate = args.learning_rate
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep='\n')
# Build a simple MLP model
model = Sequential()
# first hidden layer
model.add(Dense(n_h1, activation='relu', input_shape=(n_inputs,)))
# second hidden layer
model.add(Dense(n_h2, activation='relu'))
# second hidden layer
model.add(Dense(n_h3, activation='relu'))
# output layer
model.add(Dense(n_outputs, activation='sigmoid'))
model.summary()
model.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy']
)
# start an Azure ML run
run = Run.get_context()
class LogRunMetrics(Callback):
# callback at the end of every epoch
def on_epoch_end(self, epoch, log):
# log a value repeated which creates a list
run.log('Loss', log['loss'])
run.log('Accuracy', log['acc'])
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=n_epochs,
verbose=2,
class_weight=class_weight,
callbacks=[LogRunMetrics()])
score = model.evaluate(X_test, y_test, verbose=1)
# #### get accuracy, F1, precision and recall
# Get the class predictions
y_classes = model.predict_classes(X_test, batch_size=batch_size, verbose=1)
print(y_classes
print(classification_report(y_test, y_classes))
...

MNIST Data set up batch

I am at the step of train the model. However, when I apply the code from a tutorial: batch_x, batch_y = mnist.train.next_batch(50). It shows that there is no attribute 'train' in the TensorFlow model. I know it is outdated code, and I tried to convert to new version of TensorFlow. However, i couldn't find a matching code that can do the same thing as the above line of code do. I bet there is a way but I couldn't come up with one solution.
I found a method that asked me to use tf.data.Dataset.batch(batch_size).
I tried the following way, but none of them works.
a. batch_x, batch_y = mnist.train.next_batch(50)
b. batch_x, batch_y = tf.data.Dataset.batch(batch_size)
c. batch_x, batch_y = tf.data.Dataset.batch(50)
d. batch_x, batch_y = mnist.batch(50)
with tf.Session() as sess:
#FIrst, run vars_initializer to initialize all variables
sess.run(vars_initializer)
for i in range(steps):
#Each batch: 50 images
batch_x, batch_y = mnist.train.next_batch(50)
#Train the model
#Dropout keep_prob (% to keep): 0.5 --> 50% will be dropped out
sess.run(cnn_trainer, feed_dict={x: batch_x, y_true: batch_y, hold_prob: 0.5})
#Test the model: at each 100th step
#Run this block of code for each 100 times of training, each time run a batch
if i % 100 == 0:
print('ON STEP: {}'.format(i))
print('ACCURACY: ')
#Compare to find matches of y_pred and y_true
matches = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_true, 1))
#Cast the matches from integers to tf.float32
#Calculate the accuracy using the mean of matches
acc = tf.reduce_mean(tf.cast(matches, tf.float32))
#Test the model at each 100th step
#Using test dataset
#Dropout: NONE because of test, not training.
test_accuracy = sess.run(acc, feed_dict = {x:mnist.test.images, y_true:mnist.test.labels, hold_prob:1.0})
print(test_accuracy)
print('\n')
You can use tf.keras.datasets.mnist.load_data. It returns a tuple of Numpy arrays: (x_train, y_train), (x_test, y_test).
After that, you need to create dataset object using Dataset API. This will create training dataset. Test dataset could be created in the same fashion.
train, test = tf.keras.datasets.mnist.load_data()
dataset = tf.data.Dataset.from_tensor_slices((train[0], train[1]))
Then, to create batch, you need to apply batch function to it
dataset = dataset.batch(1)
To output it contents or use it in training you need to create iterator. Code below creates most common iterator and outputs element of batch_size in this case 1.
iterator = dataset.make_one_shot_iterator()
with tf.Session() as sess:
print(sess.run(iterator.get_next())
Please read https://www.tensorflow.org/guide/datasets
This uses TensorFlow 1.11.0 and Keras and intended to show how to use the batch. You have to adapt it to your need.
import tensorflow as tf
from tensorflow import keras as k
(x_train, y_train), (X_test, Y_test) = tf.keras.datasets.mnist.load_data()
X_train = x_train.reshape(x_train.shape[0], 28, 28,1)
y_train = tf.keras.utils.to_categorical(y_train,10)
X_test = X_test.reshape(X_test.shape[0], 28, 28,1)
Y_test = tf.keras.utils.to_categorical(Y_test,10)
train_dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train))
train_dataset = train_dataset.batch(32)
test_dataset = tf.data.Dataset.from_tensor_slices((X_test, Y_test))
test_dataset = test_dataset.batch(32)
model = tf.keras.models.Sequential([
tf.keras.layers.Convolution2D(32, (2, 2), activation='relu', input_shape=(28, 28,1)),
tf.keras.layers.MaxPool2D(pool_size=2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128),
tf.keras.layers.Activation('relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation='softmax')
])
tbCallback = [
k.callbacks.TensorBoard(
log_dir="D:/TensorBoard", histogram_freq=1, write_graph=True, write_images=True
)
]
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_dataset, epochs = 10, steps_per_epoch = 30,validation_data=test_dataset,validation_steps=1, callbacks=tbCallback)

Resources