How to find column position for first matching - python-3.x

I have a dataframe which has 500K rows and 200 columns. I need to find first zero's column index of each row. If I couldn't find any zero in a row, i should see like 999.
Thank you for your kindest help.
This is my example:
a = {'A':[1,2,5,7,0,9],
'B':[6,5,0,0,7,2],
'C':[0,8,np.nan,10,0,6],
'D':[np.nan, 9,5,2,6,7],
'E':[1,4,6,3,3,6]}
aidx = ['id_1','id_2','id_3',
'id_4','id_5','id_6']
df = pd.DataFrame(a, index=aidx)
def get_col(df,num):
df_num = df==num
df_num=df_num[df_num.any(axis=1)].idxmax(axis=1)
return(df_num)
df_new = pd.DataFrame(get_col(df,0))
df_need = pd.DataFrame([2,999,1,1,0,999], index=aidx)

Just like this
s=(df.values==0)
np.where(np.any(s,1),s.argmax(1),999)
Out[77]: array([ 2, 999, 1, 1, 0, 999], dtype=int64)

Create a mapping dictionary from data frame column names, and construct the dataframe using numpy where
d = dict(zip(df.columns, np.arange(len(df.columns))))
df = pd.DataFrame(np.where(df.eq(0).any(1),df.eq(0).idxmax(1), 999), index=df.index)
df[0] = df[0].map(d).fillna(999).astype(int)
0
id_1 2
id_2 999
id_3 1
id_4 1
id_5 0
id_6 999
Or using Numpy,
from numpy import copy
a = copy(np.where(df.eq(0).any(1),df.eq(0).idxmax(1), 999))
for k, v in d.items():
a[a==k] = v
pd.DataFrame(a, index = df.index)

Related

Replace dataframe value by indices

I've the dataframe in
import pandas as pd
in = pd.DataFrame(
columns=[1, 2],
data= [['a','b'],['c','d']],
)
in
1 2
0 a b
1 c d
and would like to replace single values (here: d with z) by indices (of row, column) resulting in a dataframe out:
1 2
0 a b
1 c z
How can I replace a value by indices (here: row idx is 1, column idx is 1) most efficient (memory consumption, execution time)?
Use DataFrame.iloc if want set values by positions (first value is 0, because python counts from 0):
df.iloc[1,1] = 'z'
Or if want set by labels (index and columns values) use DataFrame.loc:
df.loc[1,2] = 'z'
If want set one value only better is use DataFrame.iat or
DataFrame.at:
#by positions
df.iat[1,1] = 'z'
#by labels
df.at[1,2] = 'z'

Adding a row to existing dataframe [duplicate]

How do I create an empty DataFrame, then add rows, one by one?
I created an empty DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
Then I can add a new row at the end and fill a single field with:
df = df._set_value(index=len(df), col='qty1', value=10.0)
It works for only one field at a time. What is a better way to add new row to df?
You can use df.loc[i], where the row with index i will be what you specify it to be in the dataframe.
>>> import pandas as pd
>>> from numpy.random import randint
>>> df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
>>> for i in range(5):
>>> df.loc[i] = ['name' + str(i)] + list(randint(10, size=2))
>>> df
lib qty1 qty2
0 name0 3 3
1 name1 2 4
2 name2 2 8
3 name3 2 1
4 name4 9 6
In case you can get all data for the data frame upfront, there is a much faster approach than appending to a data frame:
Create a list of dictionaries in which each dictionary corresponds to an input data row.
Create a data frame from this list.
I had a similar task for which appending to a data frame row by row took 30 min, and creating a data frame from a list of dictionaries completed within seconds.
rows_list = []
for row in input_rows:
dict1 = {}
# get input row in dictionary format
# key = col_name
dict1.update(blah..)
rows_list.append(dict1)
df = pd.DataFrame(rows_list)
In the case of adding a lot of rows to dataframe, I am interested in performance. So I tried the four most popular methods and checked their speed.
Performance
Using .append (NPE's answer)
Using .loc (fred's answer)
Using .loc with preallocating (FooBar's answer)
Using dict and create DataFrame in the end (ShikharDua's answer)
Runtime results (in seconds):
Approach
1000 rows
5000 rows
10 000 rows
.append
0.69
3.39
6.78
.loc without prealloc
0.74
3.90
8.35
.loc with prealloc
0.24
2.58
8.70
dict
0.012
0.046
0.084
So I use addition through the dictionary for myself.
Code:
import pandas as pd
import numpy as np
import time
del df1, df2, df3, df4
numOfRows = 1000
# append
startTime = time.perf_counter()
df1 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows-4):
df1 = df1.append( dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']), ignore_index=True)
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df1.shape)
# .loc w/o prealloc
startTime = time.perf_counter()
df2 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows):
df2.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df2.shape)
# .loc with prealloc
df3 = pd.DataFrame(index=np.arange(0, numOfRows), columns=['A', 'B', 'C', 'D', 'E'] )
startTime = time.perf_counter()
for i in range( 1,numOfRows):
df3.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df3.shape)
# dict
startTime = time.perf_counter()
row_list = []
for i in range (0,5):
row_list.append(dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']))
for i in range( 1,numOfRows-4):
dict1 = dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E'])
row_list.append(dict1)
df4 = pd.DataFrame(row_list, columns=['A','B','C','D','E'])
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df4.shape)
P.S.: I believe my realization isn't perfect, and maybe there is some optimization that could be done.
You could use pandas.concat(). For details and examples, see Merge, join, and concatenate.
For example:
def append_row(df, row):
return pd.concat([
df,
pd.DataFrame([row], columns=row.index)]
).reset_index(drop=True)
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})
df = append_row(df, new_row)
NEVER grow a DataFrame!
Yes, people have already explained that you should NEVER grow a DataFrame, and that you should append your data to a list and convert it to a DataFrame once at the end. But do you understand why?
Here are the most important reasons, taken from my post here.
It is always cheaper/faster to append to a list and create a DataFrame in one go.
Lists take up less memory and are a much lighter data structure to work with, append, and remove.
dtypes are automatically inferred for your data. On the flip side, creating an empty frame of NaNs will automatically make them object, which is bad.
An index is automatically created for you, instead of you having to take care to assign the correct index to the row you are appending.
This is The Right Way™ to accumulate your data
data = []
for a, b, c in some_function_that_yields_data():
data.append([a, b, c])
df = pd.DataFrame(data, columns=['A', 'B', 'C'])
These options are horrible
append or concat inside a loop
append and concat aren't inherently bad in isolation. The
problem starts when you iteratively call them inside a loop - this
results in quadratic memory usage.
# Creates empty DataFrame and appends
df = pd.DataFrame(columns=['A', 'B', 'C'])
for a, b, c in some_function_that_yields_data():
df = df.append({'A': i, 'B': b, 'C': c}, ignore_index=True)
# This is equally bad:
# df = pd.concat(
# [df, pd.Series({'A': i, 'B': b, 'C': c})],
# ignore_index=True)
Empty DataFrame of NaNs
Never create a DataFrame of NaNs as the columns are initialized with
object (slow, un-vectorizable dtype).
# Creates DataFrame of NaNs and overwrites values.
df = pd.DataFrame(columns=['A', 'B', 'C'], index=range(5))
for a, b, c in some_function_that_yields_data():
df.loc[len(df)] = [a, b, c]
The Proof is in the Pudding
Timing these methods is the fastest way to see just how much they differ in terms of their memory and utility.
Benchmarking code for reference.
It's posts like this that remind me why I'm a part of this community. People understand the importance of teaching folks getting the right answer with the right code, not the right answer with wrong code. Now you might argue that it is not an issue to use loc or append if you're only adding a single row to your DataFrame. However, people often look to this question to add more than just one row - often the requirement is to iteratively add a row inside a loop using data that comes from a function (see related question). In that case it is important to understand that iteratively growing a DataFrame is not a good idea.
If you know the number of entries ex ante, you should preallocate the space by also providing the index (taking the data example from a different answer):
import pandas as pd
import numpy as np
# we know we're gonna have 5 rows of data
numberOfRows = 5
# create dataframe
df = pd.DataFrame(index=np.arange(0, numberOfRows), columns=('lib', 'qty1', 'qty2') )
# now fill it up row by row
for x in np.arange(0, numberOfRows):
#loc or iloc both work here since the index is natural numbers
df.loc[x] = [np.random.randint(-1,1) for n in range(3)]
In[23]: df
Out[23]:
lib qty1 qty2
0 -1 -1 -1
1 0 0 0
2 -1 0 -1
3 0 -1 0
4 -1 0 0
Speed comparison
In[30]: %timeit tryThis() # function wrapper for this answer
In[31]: %timeit tryOther() # function wrapper without index (see, for example, #fred)
1000 loops, best of 3: 1.23 ms per loop
100 loops, best of 3: 2.31 ms per loop
And - as from the comments - with a size of 6000, the speed difference becomes even larger:
Increasing the size of the array (12) and the number of rows (500) makes
the speed difference more striking: 313ms vs 2.29s
mycolumns = ['A', 'B']
df = pd.DataFrame(columns=mycolumns)
rows = [[1,2],[3,4],[5,6]]
for row in rows:
df.loc[len(df)] = row
You can append a single row as a dictionary using the ignore_index option.
>>> f = pandas.DataFrame(data = {'Animal':['cow','horse'], 'Color':['blue', 'red']})
>>> f
Animal Color
0 cow blue
1 horse red
>>> f.append({'Animal':'mouse', 'Color':'black'}, ignore_index=True)
Animal Color
0 cow blue
1 horse red
2 mouse black
For efficient appending, see How to add an extra row to a pandas dataframe and Setting With Enlargement.
Add rows through loc/ix on non existing key index data. For example:
In [1]: se = pd.Series([1,2,3])
In [2]: se
Out[2]:
0 1
1 2
2 3
dtype: int64
In [3]: se[5] = 5.
In [4]: se
Out[4]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64
Or:
In [1]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
.....: columns=['A','B'])
.....:
In [2]: dfi
Out[2]:
A B
0 0 1
1 2 3
2 4 5
In [3]: dfi.loc[:,'C'] = dfi.loc[:,'A']
In [4]: dfi
Out[4]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
In [5]: dfi.loc[3] = 5
In [6]: dfi
Out[6]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
For the sake of a Pythonic way:
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
res = res.append([{'qty1':10.0}], ignore_index=True)
print(res.head())
lib qty1 qty2
0 NaN 10.0 NaN
You can also build up a list of lists and convert it to a dataframe -
import pandas as pd
columns = ['i','double','square']
rows = []
for i in range(6):
row = [i, i*2, i*i]
rows.append(row)
df = pd.DataFrame(rows, columns=columns)
giving
i double square
0 0 0 0
1 1 2 1
2 2 4 4
3 3 6 9
4 4 8 16
5 5 10 25
If you always want to add a new row at the end, use this:
df.loc[len(df)] = ['name5', 9, 0]
I figured out a simple and nice way:
>>> df
A B C
one 1 2 3
>>> df.loc["two"] = [4,5,6]
>>> df
A B C
one 1 2 3
two 4 5 6
Note the caveat with performance as noted in the comments.
This is not an answer to the OP question, but a toy example to illustrate ShikharDua's answer which I found very useful.
While this fragment is trivial, in the actual data I had 1,000s of rows, and many columns, and I wished to be able to group by different columns and then perform the statistics below for more than one target column. So having a reliable method for building the data frame one row at a time was a great convenience. Thank you ShikharDua!
import pandas as pd
BaseData = pd.DataFrame({ 'Customer' : ['Acme','Mega','Acme','Acme','Mega','Acme'],
'Territory' : ['West','East','South','West','East','South'],
'Product' : ['Econ','Luxe','Econ','Std','Std','Econ']})
BaseData
columns = ['Customer','Num Unique Products', 'List Unique Products']
rows_list=[]
for name, group in BaseData.groupby('Customer'):
RecordtoAdd={} #initialise an empty dict
RecordtoAdd.update({'Customer' : name}) #
RecordtoAdd.update({'Num Unique Products' : len(pd.unique(group['Product']))})
RecordtoAdd.update({'List Unique Products' : pd.unique(group['Product'])})
rows_list.append(RecordtoAdd)
AnalysedData = pd.DataFrame(rows_list)
print('Base Data : \n',BaseData,'\n\n Analysed Data : \n',AnalysedData)
You can use a generator object to create a Dataframe, which will be more memory efficient over the list.
num = 10
# Generator function to generate generator object
def numgen_func(num):
for i in range(num):
yield ('name_{}'.format(i), (i*i), (i*i*i))
# Generator expression to generate generator object (Only once data get populated, can not be re used)
numgen_expression = (('name_{}'.format(i), (i*i), (i*i*i)) for i in range(num) )
df = pd.DataFrame(data=numgen_func(num), columns=('lib', 'qty1', 'qty2'))
To add raw to existing DataFrame you can use append method.
df = df.append([{ 'lib': "name_20", 'qty1': 20, 'qty2': 400 }])
Instead of a list of dictionaries as in ShikharDua's answer (row-based), we can also represent our table as a dictionary of lists (column-based), where each list stores one column in row-order, given we know our columns beforehand. At the end we construct our DataFrame once.
In both cases, the dictionary keys are always the column names. Row order is stored implicitly as order in a list. For c columns and n rows, this uses one dictionary of c lists, versus one list of n dictionaries. The list-of-dictionaries method has each dictionary storing all keys redundantly and requires creating a new dictionary for every row. Here we only append to lists, which overall is the same time complexity (adding entries to list and dictionary are both amortized constant time) but may have less overhead due to being a simple operation.
# Current data
data = {"Animal":["cow", "horse"], "Color":["blue", "red"]}
# Adding a new row (be careful to ensure every column gets another value)
data["Animal"].append("mouse")
data["Color"].append("black")
# At the end, construct our DataFrame
df = pd.DataFrame(data)
# Animal Color
# 0 cow blue
# 1 horse red
# 2 mouse black
Create a new record (data frame) and add to old_data_frame.
Pass a list of values and the corresponding column names to create a new_record (data_frame):
new_record = pd.DataFrame([[0, 'abcd', 0, 1, 123]], columns=['a', 'b', 'c', 'd', 'e'])
old_data_frame = pd.concat([old_data_frame, new_record])
Here is the way to add/append a row in a Pandas DataFrame:
def add_row(df, row):
df.loc[-1] = row
df.index = df.index + 1
return df.sort_index()
add_row(df, [1,2,3])
It can be used to insert/append a row in an empty or populated Pandas DataFrame.
If you want to add a row at the end, append it as a list:
valuestoappend = [va1, val2, val3]
res = res.append(pd.Series(valuestoappend, index = ['lib', 'qty1', 'qty2']), ignore_index = True)
Another way to do it (probably not very performant):
# add a row
def add_row(df, row):
colnames = list(df.columns)
ncol = len(colnames)
assert ncol == len(row), "Length of row must be the same as width of DataFrame: %s" % row
return df.append(pd.DataFrame([row], columns=colnames))
You can also enhance the DataFrame class like this:
import pandas as pd
def add_row(self, row):
self.loc[len(self.index)] = row
pd.DataFrame.add_row = add_row
All you need is loc[df.shape[0]] or loc[len(df)]
# Assuming your df has 4 columns (str, int, str, bool)
df.loc[df.shape[0]] = ['col1Value', 100, 'col3Value', False]
or
df.loc[len(df)] = ['col1Value', 100, 'col3Value', False]
You can concatenate two DataFrames for this. I basically came across this problem to add a new row to an existing DataFrame with a character index (not numeric).
So, I input the data for a new row in a duct() and index in a list.
new_dict = {put input for new row here}
new_list = [put your index here]
new_df = pd.DataFrame(data=new_dict, index=new_list)
df = pd.concat([existing_df, new_df])
initial_data = {'lib': np.array([1,2,3,4]), 'qty1': [1,2,3,4], 'qty2': [1,2,3,4]}
df = pd.DataFrame(initial_data)
df
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
val_1 = [10]
val_2 = [14]
val_3 = [20]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
You can use a for loop to iterate through values or can add arrays of values.
val_1 = [10, 11, 12, 13]
val_2 = [14, 15, 16, 17]
val_3 = [20, 21, 22, 43]
df.append(pd.DataFrame({'lib': val_1, 'qty1': val_2, 'qty2': val_3}))
lib qty1 qty2
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
0 10 14 20
1 11 15 21
2 12 16 22
3 13 17 43
Make it simple. By taking a list as input which will be appended as a row in the data-frame:
import pandas as pd
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
for i in range(5):
res_list = list(map(int, input().split()))
res = res.append(pd.Series(res_list, index=['lib', 'qty1', 'qty2']), ignore_index=True)
pandas.DataFrame.append
DataFrame.append(self, other, ignore_index=False, verify_integrity=False, sort=False) → 'DataFrame'
Code
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
df.append(df2)
With ignore_index set to True:
df.append(df2, ignore_index=True)
If you have a data frame df and want to add a list new_list as a new row to df, you can simply do:
df.loc[len(df)] = new_list
If you want to add a new data frame new_df under data frame df, then you can use:
df.append(new_df)
We often see the construct df.loc[subscript] = … to assign to one DataFrame row. Mikhail_Sam posted benchmarks containing, among others, this construct as well as the method using dict and create DataFrame in the end. He found the latter to be the fastest by far.
But if we replace the df3.loc[i] = … (with preallocated DataFrame) in his code with df3.values[i] = …, the outcome changes significantly, in that that method performs similar to the one using dict. So we should more often take the use of df.values[subscript] = … into consideration. However note that .values takes a zero-based subscript, which may be different from the DataFrame.index.
Before going to add a row, we have to convert the dataframe to a dictionary. There you can see the keys as columns in the dataframe and the values of the columns are again stored in the dictionary, but there the key for every column is the index number in the dataframe.
That idea makes me to write the below code.
df2 = df.to_dict()
values = ["s_101", "hyderabad", 10, 20, 16, 13, 15, 12, 12, 13, 25, 26, 25, 27, "good", "bad"] # This is the total row that we are going to add
i = 0
for x in df.columns: # Here df.columns gives us the main dictionary key
df2[x][101] = values[i] # Here the 101 is our index number. It is also the key of the sub dictionary
i += 1
If all data in your Dataframe has the same dtype you might use a NumPy array. You can write rows directly into the predefined array and convert it to a dataframe at the end.
It seems to be even faster than converting a list of dicts.
import pandas as pd
import numpy as np
from string import ascii_uppercase
startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)
This code snippet uses a list of dictionaries to update the data frame. It adds on to ShikharDua's and Mikhail_Sam's answers.
import pandas as pd
colour = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
dict1={}
feat_list=[]
for x in colour:
for y in fruits:
# print(x, y)
dict1 = dict([('x',x),('y',y)])
# print(f'dict 1 {dict1}')
feat_list.append(dict1)
# print(f'feat_list {feat_list}')
feat_df=pd.DataFrame(feat_list)
feat_df.to_csv('feat1.csv')

Get row and column in Pandas for a cell with a certain value

I am trying to read an Excel spreadsheet that is unformatted using Pandas. There are multiple tables within a single sheet and I want to convert these tables into dataframes. Since it is not already "indexed" in the traditional way, there are no meaningful column or row indices. Is there a way to search for a specific value and get the row, column where that is? For example, say I want to get a row, column number for all cells that contain the string "Title".
I have already tried things like DataFrame.filter but that only works if there are row and column indices.
Create a df with NaN where your_value is not found.
Drop all rows that don't contain the value.
Drop all columns that don't contain the value
a = df.where(df=='your_value').dropna(how='all').dropna(axis=1)
To get the row(s)
a.index
To get the column(s)
a.columns
You can do some long and hard to read list comprehension:
# assume this df and that we are looking for 'abc'
df = pd.DataFrame({'col':['abc', 'def','wert','abc'], 'col2':['asdf', 'abc', 'sdfg', 'def']})
[(df[col][df[col].eq('abc')].index[i], df.columns.get_loc(col)) for col in df.columns for i in range(len(df[col][df[col].eq('abc')].index))]
out:
[(0, 0), (3, 0), (1, 1)]
I should note that this is (index value, column location)
you can also change .eq() to str.contains() if you are looking for any strings that contains a certain value:
[(df[col][df[col].str.contains('ab')].index[i], df.columns.get_loc(col)) for col in df.columns for i in range(len(df[col][df[col].str.contains('ab')].index))]
You can simply create a mask of the same shape than your df by calling df == 'title'.
You can then combines this with the df.where() method, which will set all fields to NA that are different to your keyword, and finally you can use dropna() to reduce it to all valid fields. Then you can use the df.columnnsand df.indexlike you're use to.
df = pd.DataFrame({"a": [0,1,2], "b": [0, 9, 7]})
print(df.where(df == 0).dropna().index)
print(df.where(df == 0).dropna().columns)
#Int64Index([0], dtype='int64')
#Index(['a', 'b'], dtype='object')
Here's an example to fetch all the row and column index of the cells containing word 'title' -
df = pd.DataFrame({'A':['here goes the title', 'tt', 'we have title here'],
'B': ['ty', 'title', 'complex']})
df
+---+---------------------+---------+
| | A | B |
+---+---------------------+---------+
| 0 | here goes the title | ty |
| 1 | tt | title |
| 2 | we have title here | complex |
+---+---------------------+---------+
idx = df.apply(lambda x: x.str.contains('title'))
col_idx = []
for i in range(df.shape[1]):
col_idx.append(df.iloc[:,i][idx.iloc[:,i]].index.tolist())
out = []
cnt = 0
for i in col_idx:
for j in range(len(i)):
out.append((i[j], cnt))
cnt += 1
out
# [(0, 0), (2, 0), (1, 1)] # Expected output
The answer by #firefly works if the second dropna gets the how='all', too like so:
a = df.where(targetMap == 'your_value').dropna(how='all').dropna(how='all',axis=1)
Another approach that's in the vein of #It_is_Chris's solution, but may be a little easier to read:
# assuming this df and that we are looking for 'abc'
df = pd.DataFrame({'col':['abc', 'def','wert','abc'], 'col2':['asdf', 'abc', 'sdfg', 'def']})
[x[1:] for x in ((v, i, j) for i, row_tup in enumerate(df.itertuples(index=False)) for j, v in enumerate(row_tup)) if x[0] == "abc"]
Output
[(0, 0), (1, 1), (3, 0)]
Similar to what Chris said, I found this to work for me, although it's not the prettiest or shortest way. This returns all the row,column pairs matching a regular expression in a dataframe:
for row in df.itertuples():
col_count = 0
for col in row:
if regex.match(str(col)):
tuples.append((row_count, col_count))
col_count+=1
row_count+=1
return tuples

Write data(list) into one excel file as row wise using python

As i'm trying to append my list values into one excel file as row wise i tried but it appending as column wise.
my INPUT is:
[[1 1 1 'Chair' 1 50 'hosur' Timestamp('2017-01-01 00:00:00')]
[2 1 1 'Table' 1 50 'hosur' Timestamp('2017-01-02 00:00:00')]]
i want to append it into one excel file as ROW wise not COLUMN wise
my tried code is
import pandas as pd
df = pd.DataFrame.from_dict({'row1':[[1 1 1 'Chair' 1 50 'hosur' Timestamp('2017-01-01 00:00:00')]
,'row2':[2 1 1 'Table' 1 50 'hosur' Timestamp('2017-01-02 00:00:00')]]})
df.to_excel('test.xlsx', header=True, index=False)
Hope this helps You.. Try like this. Here I iterated the list within a list and appended the value.
expenses = [[1, 1, 1, 'Chair', 1, 50, 'hosur', 'Timestamp(2017-01-01 00:00:00)'],
[2,1, 1, 'Table', 1, 50, 'hosur','Timestamp(2017-01-02 00:00:00)']]
import openpyxl
wb = openpyxl.Workbook()
sheet = wb.active
le_ = len(expenses)
p = 0
for i in expenses:
k = 0
for j in i:
c1 = sheet.cell(row=p+1,column=k+1)
c1.value = str(j)
k+=1
p+=1
wb.save("demo1.xlsx")

Pandas writing in csv file as columns not rows-Python

This is my code:
import os
file=[]
directory ='/Users/xxxx/Documents/sample/'
for i in os.listdir(directory):
file.append(i)
Com = list(file)
df=pd.DataFrame(data=Com)
df.to_csv('com.csv', index=False, header=True)
print('done')
at the moment I am getting all the values for i in one column as a row header. Does anyone know how to make each i value in one row as a column header?
You need to transpose the df first using .T prior to writing out to csv:
In [44]:
l = list('abc')
df = pd.DataFrame(l)
df
Out[44]:
0
0 a
1 b
2 c
compare with:
In [45]:
df = pd.DataFrame(l).T
df
Out[45]:
0 1 2
0 a b c

Resources