I am beginner and I am trying to implement AlexNet for image classification. The pytorch implementation of AlexNet is as follows:
class AlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x
However I am trying to implement the network for a input size of (3,448,224) with num of classes = 8.
I have no idea on how to change x.view in the forward method and how many layers I should drop to get optimum performance. Please help.
As stated in https://github.com/pytorch/vision/releases:
Since, most of the pretrained models provided in torchvision (the newest version) already added self.avgpool = nn.AdaptiveAvgPool2d((size, size)) to resolve the incompatibility with input size. So you don't have to care about it so much.
Below is the code, very short.
import torchvision
import torch.nn as nn
num_classes = 8
model = torchvision.models.alexnet(pretrained=True)
# replace the last classifier
model.classifier[6] = nn.Linear(4096, num_classes)
# now you can trained it with your dataset of size (3, 448, 224)
Transfer learning
There are two popular ways to do transfer learning. Suppose that we trained a model M in very large dataset D_large, now we would like to transfer the "knowledge" learned by the model M to our new model, M', on other datasets such as D_other (which has a smaller size than that of D_large).
Use (most) parts of M as the architecture of our new M' and initialize those parts with the weights trained on D_large. We can start training the model M' on the dataset D_other and let it learn the weights of those above parts from M to find the optimal weights on our new dataset. This is usually referred as fine-tuning the model M'.
Same as the above method except that before training M' we freeze all the parameters of those parts and start training M' on our dataset D_other. In both cases, those parts from M are mostly the first components in the model M' (the base). However, in this case, we refer those parts of M as the model to extract the features from the input dataset (or feature extractor). The accuracy obtained from the two methods may differ a little to some extent. However, this method guarantees the model doesn't overfit on the small dataset. It's a good point in terms of accuracy. On the other hands, when we freeze the weights of M, we don't need to store some intermediate values (the hidden outputs from each hidden layer) in the forward pass and also don't need to compute the gradients during the backward pass. This improves the speed of training and reduces the memory required during training.
The implementation
Along with Alexnet, a lot of pretrained models on ImageNet is already provided by Facebook team such as ResNet, VGG.
To fit your requirements the most in the aspect of model size, it would be nice to use VGG11, and ResNet which have fewest parameters in their model family.
I just pick VGG11 as an example:
Obtain a pretrained model from torchvision.
Freeze the all the parameters of this model.
Replace the last layer in the model by your new Linear layer to perform your classification. This means that you can reuse all most everything of M to M'.
import torchvision
# obtain the pretrained model
model = torchvision.models.vgg11(pretrained=True)
# freeze the params
for param in net.parameters():
param.requires_grad = False
# replace with your classifier
num_classes = 8
net.classifier[6] = nn.Linear(in_features=4096, out_features=num_classes)
# start training with your dataset
Warnings
In the old torchvision package version, there is no self.avgpool = nn.AdaptiveAvgPool2d((size, size)) which makes harder to train on our input size which is different from [3, 224, 224] used in training ImageNet. You can do a little effort as below:
class OurVGG11(nn.Module):
def __init__(self, num_classes=8):
super(OurVGG11, self).__init__()
self.vgg11 = torchvision.models.vgg11(pretrained=True)
for param in self.vgg11.parameters():
param.requires_grad = False
# Add a avgpool here
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
# Replace the classifier layer
self.vgg11.classifier[-1] = nn.Linear(4096, num_classes)
def forward(self, x):
x = self.vgg11.features(x)
x = self.avgpool(x)
x = x.view(x.size(0), 512 * 7 * 7)
x = self.vgg11.classifier(x)
return x
model = OurVGG11()
# now start training `model` on our dataset.
Try out with different models in torchvision.models.
Related
I have a dataset of 600x600 grayscale images, grouped in batches of 50 images by a dataloader.
My network has a convolution layer with 16 filters, followed by Maxpooling with 6x6 kernels, and then a Dense layer. The output of the conv2D should be out_channels*width*height/maxpool_kernel_W/maxpool_kernel_H = 16*600*600/6/6 = 160000, multiplied by the batch size, 50.
However when I try to do a forward pass I get the following error: RuntimeError: mat1 and mat2 shapes cannot be multiplied (80000x100 and 160000x1000). I verified that the data is formatted correctly as [batch,n_channels,width,height] (so [50,1,600,600] in my case).
Logically the output should be a 50x160000 matrix, but apparently it is formatted as a 80000x100 matrix. It seems like torch is multiplying the matrices along the wrong dimensions. If anyone understands why, please help me understand too.
# get data (using a fake dataset generator)
dataset = FakeData(size=500, image_size= (1, 600, 600), transform=ToTensor())
training_data, test_data = random_split(dataset,[400,100])
train_dataloader = DataLoader(training_data, batch_size=50, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=50, shuffle=True)
net = nn.Sequential(
nn.Conv2d(
in_channels=1,
out_channels=16,
kernel_size=5,
padding=2,
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=6),
nn.Linear(160000, 1000),
nn.ReLU(),
)
optimizer = optim.Adam(net.parameters(), lr=1e-3,)
epochs = 10
for i in range(epochs):
for (x, _) in train_dataloader:
optimizer.zero_grad()
# make sure the data is in the right shape
print(x.shape) # returns torch.Size([50, 1, 600, 600])
# error happens here, at the first forward pass
output = net(x)
criterion = nn.MSELoss()
loss = criterion(output, x)
loss.backward()
optimizer.step()
If you inspect your model's inference layer by layer you would have noticed that the nn.MaxPool2d returns a 4D tensor shaped (50, 16, 100, 100). There are different ways to reduce spatial dimensionality (flattening, average-pooling, max-pooling). For instance, if you want to flatten the spatial dimensions, this will result in a tensor of shape (50, 16*100*100), ie. (50, 160_000) as you expected to have. This being said you are required to use a nn.Flatten layer.
net = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=6),
nn.Flatten(),
nn.Linear(160000, 1000),
nn.ReLU())
I want to create an LSTM model using pytorch that takes multiple time series and creates predictions of all of them, a typical "many-to-many" LSTM network.
I am able to achieve what I want in keras. I create a set of data with three variables which are simply linearly spaced with some gaussian noise. Training the keras model I get a prediction 12 steps ahead that is reasonable.
When I try the same thing in pytorch the, model will always predict the mean of the input data. This is confirmed when looking at the loss during training I can see that the model never seems to perform better than just predicting the mean.
TL;DR; The question is: How can I achieve the same thing in pytorch as in the keras example in the gist below?
Full working examples are available here https://gist.github.com/jonlachmann/5cd68c9667a99e4f89edc0c307f94ddb
The keras network is defined as
model = Sequential()
model.add(LSTM(100, activation='relu', return_sequences=True, input_shape=(n_steps, n_features)))
model.add(LSTM(100, activation='relu'))
model.add(Dense(n_features))
model.compile(optimizer='adam', loss='mse')
and the pytorch network is
# Define the pytorch model
class torchLSTM(torch.nn.Module):
def __init__(self, n_features, seq_length):
super(torchLSTM, self).__init__()
self.n_features = n_features
self.seq_len = seq_length
self.n_hidden = 100 # number of hidden states
self.n_layers = 1 # number of LSTM layers (stacked)
self.l_lstm = torch.nn.LSTM(input_size=n_features,
hidden_size=self.n_hidden,
num_layers=self.n_layers,
batch_first=True)
# according to pytorch docs LSTM output is
# (batch_size,seq_len, num_directions * hidden_size)
# when considering batch_first = True
self.l_linear = torch.nn.Linear(self.n_hidden * self.seq_len, 3)
def init_hidden(self, batch_size):
# even with batch_first = True this remains same as docs
hidden_state = torch.zeros(self.n_layers, batch_size, self.n_hidden)
cell_state = torch.zeros(self.n_layers, batch_size, self.n_hidden)
self.hidden = (hidden_state, cell_state)
def forward(self, x):
batch_size, seq_len, _ = x.size()
lstm_out, self.hidden = self.l_lstm(x, self.hidden)
# lstm_out(with batch_first = True) is
# (batch_size,seq_len,num_directions * hidden_size)
# for following linear layer we want to keep batch_size dimension and merge rest
# .contiguous() -> solves tensor compatibility error
x = lstm_out.contiguous().view(batch_size, -1)
return self.l_linear(x)
I'm having trouble understanding how batches play a role into the Pytorch framework.
In this model:
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
# 28x28x1 => 26x26x32
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3)
self.d1 = nn.Linear(26 * 26 * 32, 128)
self.d2 = nn.Linear(128, 10)
def forward(self, x):
# 32x1x28x28 => 32x32x26x26
x = self.conv1(x)
x = F.relu(x)
# flatten => 32 x (32*26*26)
x = x.flatten(start_dim = 1)
#x = x.view(32, -1)
# 32 x (32*26*26) => 32x128
x = self.d1(x)
x = F.relu(x)
# logits => 32x10
logits = self.d2(x)
out = F.softmax(logits, dim=1)
return out
In the forward definition, we pass in some x, ie. aggregated images for a batch from a DataLoader. Here, the 32x1x28x28 dimension indicates that there are 32 images in a batch. Do we just ignore this fact and Pytorch handles applying Conv2d to each sample? The forward propagation seems to be just relative to a single image.
Indeed, the network is agnostic to batches: The model is designed to classify a single image.
So why do we need batches for?
Each model has weights (aka parameters) and one needs to optimize the weights using the training images so that the model will classify images as correctly as possible.
This optimization process is usually carried out using Stochastic Gradient Descent (SGD): we are using the current values of the weights to classify a batch of images. Using the prediction the current model made, and the expected predictions we know should be (the "labels") we can compute a gradient of the weights and improve the model.
I am trying to implement Bayesian CNN using Mc Dropout on Pytorch,
the main idea is that by applying dropout at test time and running over many forward passes , you get predictions from a variety of different models.
I’ve found an application of the Mc Dropout and I really did not get how they applied this method and how exactly they did choose the correct prediction from the list of predictions
here is the code
def mcdropout_test(model):
model.train()
test_loss = 0
correct = 0
T = 100
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output_list = []
for i in xrange(T):
output_list.append(torch.unsqueeze(model(data), 0))
output_mean = torch.cat(output_list, 0).mean(0)
test_loss += F.nll_loss(F.log_softmax(output_mean), target, size_average=False).data[0] # sum up batch loss
pred = output_mean.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nMC Dropout Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
train()
mcdropout_test()
I have replaced
data, target = Variable(data, volatile=True), Variable(target)
by adding
with torch.no_grad(): at the beginning
And this is how I have defined my CNN
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 192, 5, padding=2)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(192, 192, 5, padding=2)
self.fc1 = nn.Linear(192 * 8 * 8, 1024)
self.fc2 = nn.Linear(1024, 256)
self.fc3 = nn.Linear(256, 10)
self.dropout = nn.Dropout(p=0.3)
nn.init.xavier_uniform_(self.conv1.weight)
nn.init.constant_(self.conv1.bias, 0.0)
nn.init.xavier_uniform_(self.conv2.weight)
nn.init.constant_(self.conv2.bias, 0.0)
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.constant_(self.fc1.bias, 0.0)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.constant_(self.fc2.bias, 0.0)
nn.init.xavier_uniform_(self.fc3.weight)
nn.init.constant_(self.fc3.bias, 0.0)
def forward(self, x):
x = self.pool(F.relu(self.dropout(self.conv1(x)))) # recommended to add the relu
x = self.pool(F.relu(self.dropout(self.conv2(x)))) # recommended to add the relu
x = x.view(-1, 192 * 8 * 8)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(self.dropout(x)))
x = self.fc3(self.dropout(x)) # no activation function needed for the last layer
return x
Can anyone help me to get the right implementation of the Monte Carlo Dropout method on CNN?
Implementing MC Dropout in Pytorch is easy. All that is needed to be done is to set the dropout layers of your model to train mode. This allows for different dropout masks to be used during the different various forward passes. Below is an implementation of MC Dropout in Pytorch illustrating how multiple predictions from the various forward passes are stacked together and used for computing different uncertainty metrics.
import sys
import numpy as np
import torch
import torch.nn as nn
def enable_dropout(model):
""" Function to enable the dropout layers during test-time """
for m in model.modules():
if m.__class__.__name__.startswith('Dropout'):
m.train()
def get_monte_carlo_predictions(data_loader,
forward_passes,
model,
n_classes,
n_samples):
""" Function to get the monte-carlo samples and uncertainty estimates
through multiple forward passes
Parameters
----------
data_loader : object
data loader object from the data loader module
forward_passes : int
number of monte-carlo samples/forward passes
model : object
keras model
n_classes : int
number of classes in the dataset
n_samples : int
number of samples in the test set
"""
dropout_predictions = np.empty((0, n_samples, n_classes))
softmax = nn.Softmax(dim=1)
for i in range(forward_passes):
predictions = np.empty((0, n_classes))
model.eval()
enable_dropout(model)
for i, (image, label) in enumerate(data_loader):
image = image.to(torch.device('cuda'))
with torch.no_grad():
output = model(image)
output = softmax(output) # shape (n_samples, n_classes)
predictions = np.vstack((predictions, output.cpu().numpy()))
dropout_predictions = np.vstack((dropout_predictions,
predictions[np.newaxis, :, :]))
# dropout predictions - shape (forward_passes, n_samples, n_classes)
# Calculating mean across multiple MCD forward passes
mean = np.mean(dropout_predictions, axis=0) # shape (n_samples, n_classes)
# Calculating variance across multiple MCD forward passes
variance = np.var(dropout_predictions, axis=0) # shape (n_samples, n_classes)
epsilon = sys.float_info.min
# Calculating entropy across multiple MCD forward passes
entropy = -np.sum(mean*np.log(mean + epsilon), axis=-1) # shape (n_samples,)
# Calculating mutual information across multiple MCD forward passes
mutual_info = entropy - np.mean(np.sum(-dropout_predictions*np.log(dropout_predictions + epsilon),
axis=-1), axis=0) # shape (n_samples,)
Moving on to the implementation which is posted in the question above, multiple predictions from T different forward passes are obtained by first setting the model to train mode (model.train()). Note that this is not desirable because unwanted stochasticity will be introduced in the predictions if there are layers other than dropout such as batch-norm in the model. Hence the best way is to just set the dropout layers to train mode as shown in the snippet above.
I have implemented a variational autoencoder with CNN layers in the encoder and decoder. The code is shown below. My training data (train_X) consists of 40'000 images with size 64 x 80 x 1 and my validation data (valid_X) consists of 4500 images of size 64 x 80 x 1.
I would like to adapt my network in the following two ways:
Instead of using 2D convolutions (Conv2D and Conv2DTranspose) I would like to use 3D convolutions to take time into account (as the third dimension). For that I would like to use slices of 10 images, i.e. I will have images of size 64 x 80 x 1 x 10. Can I just use Conv3D and Conv3DTranspose or are other changes necessary?
I would like to try out convolutional LSTMs (ConvLSTM2D) in the encoder and decoder instead of plain 2D convolutions. Again, the input size of the images would be 64 x 80 x 1 x 10 (i.e. time series of 10 images). How can I adapt my network to work with ConvLSTM2D?
import keras
from keras import backend as K
from keras.layers import (Dense, Input, Flatten)
from keras.layers import Lambda, Conv2D
from keras.models import Model
from keras.layers import Reshape, Conv2DTranspose
from keras.losses import mse
def sampling(args):
z_mean, z_log_var = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
inner_dim = 16
latent_dim = 6
image_size = (64,78,1)
inputs = Input(shape=image_size, name='encoder_input')
x = inputs
x = Conv2D(32, 3, strides=2, activation='relu', padding='same')(x)
x = Conv2D(64, 3, strides=2, activation='relu', padding='same')(x)
# shape info needed to build decoder model
shape = K.int_shape(x)
# generate latent vector Q(z|X)
x = Flatten()(x)
x = Dense(inner_dim, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(inner_dim, activation='relu')(latent_inputs)
x = Dense(shape[1] * shape[2] * shape[3], activation='relu')(x)
x = Reshape((shape[1], shape[2], shape[3]))(x)
x = Conv2DTranspose(64, 3, strides=2, activation='relu', padding='same')(x)
x = Conv2DTranspose(32, 3, strides=2, activation='relu', padding='same')(x)
outputs = Conv2DTranspose(filters=1, kernel_size=3, activation='sigmoid', padding='same', name='decoder_output')(x)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')
def vae_loss(x, x_decoded_mean):
reconstruction_loss = mse(K.flatten(x), K.flatten(x_decoded_mean))
reconstruction_loss *= image_size[0] * image_size[1]
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
return vae_loss
optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.000)
vae.compile(loss=vae_loss, optimizer=optimizer)
vae.fit(train_X, train_X,
epochs=500,
batch_size=128,
verbose=1,
shuffle=True,
validation_data=(valid_X, valid_X))
Thank you very much for the help. I really appreciate it.
Have your input shape as (10, 64 , 80, 1) and just replace the layers.
The boring part is to organize the input data, if you're going to use sliding windows or just reshape from (images, 64,80,1) to (images//10, 10, 64,80,1).
Sliding windows (Overlapping) or not?
1 - Ok.... if you want your model to understand individual segments of 10 images you may overlap or not. Your choice. Performance may be better with overlapping, but not necessarily.
There isn't really an order in the images, as long as the 10 frames are in order.
This is supported by Conv3D and by LSTM with stateful=False.
2 - But if you want your model to understand the entire sequence, dividing the sequences only because of memory, only LSTM with stateful=True can support this.
(A Conv3D with kernel size = (frames, w, h) will work, but limited to frames, never understanding sequences longer than frames. It may still be capable of detecting the existence of punctual events, though, but not long sequence relationships)
In this case, for the LSTM you will need to:
set shuffle = False in training
use a fixed batch size of sequences
not overlap images
create a manual training loop where you do model.reset_states() every time you are giving "new sequences" for training AND predicting
The loop structure would be:
for epoch in range(epochs):
for group_of_sequences in range(groups):
model.reset_states()
sequences = getAGroupOfCompleteSequences() #shape (sequences, total_length, ....)
for batch in range(slide_divisions):
batch = sequences[:,10*batch : 10*(batch+1)]
model.train_on_batch(batch, ....)