I have a pandas df like this:
MEMBERSHIP
[2022_K_, EWREW_NK]
[333_NFK_,2022_K_, EWREW_NK, 000]
And I have a list of keys:
list_k = ["_K_","_NK_","_NKF_","_KF_"]
I want to add and create a column that count if any of that element is in the column. The desired output is:
MEMBERSHIP | COUNT
[2022_K_, EWREW_NK] | 2
[333_NFK_,2022_K_, EWREW_NK, 000] | 3
Can you help me?
IIUC, you can use pandas .str acccess methods with regex:
import pandas as pd
df = pd.DataFrame({'MEMBERSHIP':[['2022_K_', 'EWREW_NK'],
['333_NFK_','2022_K_', 'EWREW_NK', '000']]})
list_k = ["_K_","_NK","_NFK_","_KF_"] #I changed this list a little
reg = '|'.join(list_k)
df['count'] = df['MEMBERSHIP'].explode().str.contains(reg).groupby(level=0).sum()
print(df)
Output:
MEMBERSHIP count
0 [2022_K_, EWREW_NK] 2
1 [333_NFK_, 2022_K_, EWREW_NK, 000] 3
you can use a lambda function:
def check(x):
total=0
for i in x:
if type(i) != str: #if value is not string pass.
pass
else:
for j in list_k:
if j in i:
total+=1
return total
df['count']=df['MEMBERSHIP'].apply(lambda x: check(x))
I come up with this dumb code
count_row=0
df['Count']= None
for i in df['MEMBERSHIP_SPLIT']:
count_element=0
for sub in i:
for e in list_k:
if e in sub:
count_element+=1
df['Count'][count_row]=count_element
count_row += 1
I am using python3 and pandas to create a script that will:
Be dynamic across different dataset lengths(rows) and unique values - completed
Take unique values from column A and create separate dataframes as variables for each unique entry - completed
Add totals to the bottom of each dataframe - completed
Concatenate the separate dataframes back together - incomplete
The issue is I am unable to formulate a way to create a list of the variables in use and apply them as arg in to the command pd.concat.
The sample dataset. The dataset may have more unique BrandFlavors or less which is why the script must be flexible and dynamic.
Script:
import pandas as pd
import warnings
warnings.simplefilter(action='ignore')
excel_file = ('testfile.xlsx')
df = pd.read_excel(excel_file)
df = df.sort_values(by='This', ascending=False)
colarr = df.columns.values
arr = df[colarr[0]].unique()
for i in range(len(arr)):
globals()['var%s' % i] = df.loc[df[colarr[0]] == arr[i]]
for i in range(len(arr)):
if globals()['var%s' % i].empty:
''
else:
globals()['var%s' % i] = globals()['var%s' % i].append({'BrandFlavor':'Total',
'This':globals()['var%s' % i]['This'].sum(),
'Last':globals()['var%s' % i]['Last'].sum(),
'Diff':globals()['var%s' % i]['Diff'].sum(),
'% Chg':globals()['var%s' % i]['Diff'].sum()/globals()['var%s' % i]['Last'].sum() * 100}, ignore_index=True)
globals()['var%s' % i]['% Chg'].fillna(0, inplace=True)
globals()['var%s' % i].fillna(' ', inplace=True)
I have tried this below, however the list is a series of strings
vararr = []
count = 0
for x in range(len(arr)):
vararr.append('var' + str(count))
count = count + 1
df = pd.concat([vararr])
pd.concat does not recognize a string. I tired to build a class with an arg defined but had the same issue.
The desired outcome would be a code snippet that generated a list of variables that matched the ones created by lines 9/10 and could be referenced by pd.concat([list, of, vars, here]). It must be dynamic. Thank you
Just fixing the issue at hand, you shouldn't use globals to make variables, that is not considered good practice. Your code should work with some minor modifications.
import pandas as pd
import warnings
warnings.simplefilter(action='ignore')
excel_file = ('testfile.xlsx')
df = pd.read_excel(excel_file)
df = df.sort_values(by='This', ascending=False)
def good_dfs(dataframe):
if dataframe.empty:
pass
else:
this = dataframe.This.sum()
last = dataframe.Last.sum()
diff = dataframe.Diff.sum()
data = {
'BrandFlavor': 'Total',
'This': this,
'Last': last,
'Diff': diff,
'Pct Change': diff / last * 100
}
dataframe.append(data, ignore_index=True)
dataframe['Pct Change'].fillna(0.0, inplace=True)
dataframe.fillna(' ', inplace=True)
return dataframe
colarr = df.columns.values
arr = df[colarr[0]].unique()
dfs = []
for i in range(len(arr)):
temp = df.loc[df[colarr[0]] == arr[i]]
dfs.append(temp)
final_dfs = [good_dfs(d) for d in dfs]
final_df = pd.concat(final_dfs)
Although I will say, there are far easier ways to accomplish what you want without doing all of this, however that can be a separate question.
I have a multi-index dataframe. The index's are represented by an ID and date. The 3 columns I have are cost, revenue, and expenditure.
I want to create 3 new columns based off certain conditions.
1) The first new column I would want to create would be based off the condition, for the 3 most previous dates per ID, if the cost column decreases consistently, label the new row values as 'NEG', if not then label it 'No'.
2) The second column I would want to create would be based off the condition, for the 3 most recent dates, if the revenue column decreases consistently, label the new row values as 'NEG', if not then label it 'No'.
3) The third column I would want to create would be based off the condition, for the 3 most recent dates, if the expenditure column increases consistently, label the new row value as 'POS' or if it stays the same label the new row value as 'STABLE'.
idx = pd.MultiIndex.from_product([['001', '002', '003','004'],
['2017-06-30', '2017-12-31', '2018-06-30','2018-12-31','2019-06-30']],
names=['ID', 'Date'])
col = ['Cost', 'Revenue','Expenditure']
dict2 = {'Cost':[12,6,-2,-10,-16,-10,14,12,6,7,4,2,1,4,-4,5,7,9,8,1],
'Revenue':[14,13,2,1,-6,-10,14,12,6,7,4,2,1,4,-4,5,7,9,18,91],
'Expenditure':[17,196,20,1,-6,-10,14,12,6,7,4,2,1,4,-4,5,7,9,18,18]}
df = pd.DataFrame(dict2,idx,col)
i have tried creating a function then applying it to my DF but i keep getting errors...
the solution i want to end up with would look like this..
idx = pd.MultiIndex.from_product([['001', '002', '003','004'],
['2017-06-30', '2017-12-31', '2018-06-30','2018-12-31','2019-06-30']],
names=['ID', 'Date'])
col = ['Cost', 'Revenue','Expenditure', 'Cost Outlook', 'Revenue Outlook', 'Expenditure Outlook']
dict3= {'Cost': [12,6,-2,-10,-16,
-10,14,12,6,7,
4,2,1,4,-4,
5,7,9,8,1],
'Cost Outlook': ['no','no','NEG','NEG','NEG',
'no','no','no','NEG','NEG',
'no','no','NEG','no','no',
'no','no','no','no','NEG'],
'Revenue':[14,13,2,1,-6,
-10,14,12,6,7,
4,2,1,4,-4,
5,7,9,18,91],
'Revenue Outlook': ['no','no','NEG','NEG','NEG',
'no','no','no','NEG','NEG',
'no','no','NEG','no','no',
'no','no','no','no','no'],
'Expenditure':[17,196,1220,1220, -6,
-10,14,120,126,129,
4,2,1,4,-4,
5,7,9,18,18],
'Expenditure Outlook':['no','no','POS','POS','no',
'no','no','POS','POS','POS',
'no','no','no','no','no',
'no','no','POS','POS','STABLE']
}
df_new = pd.DataFrame(dict3,idx,col)
Here's what I would do:
# update Cost and Revenue Outlooks
# because they have similar conditions
for col in ['Cost', 'Revenue']:
groups = df.groupby('ID')
outlook = f'{col} Outlook'
df[outlook] = groups[col].diff().lt(0)
# moved here
df[outlook] = np.where(groups[outlook].rolling(2).sum().eq(2), 'NEG', 'no')
# update Expenditure Outlook
col = 'Expenditure'
outlook = f'{col} Outlook'
s = df.groupby('ID')[col].diff()
df[outlook] = np.select( (s.eq(0).groupby(level=0).rolling(2).sum().eq(2),
s.gt(0).groupby(level=0).rolling(2).sum().eq(2)),
('STABLE', 'POS'), 'no')
See if this does the job:
is_descending = lambda a: np.all(a[:-1] > a[1:])
is_ascending = lambda a: np.all(a[:-1] <= a[1:])
df1 = df.reset_index()
df1["CostOutlook"] = df1.groupby("ID").Cost.rolling(3).apply(is_descending).fillna(0).apply(lambda x: "NEG" if x > 0 else "no").to_list()
df1["RevenueOutlook"] = df1.groupby("ID").Revenue.rolling(3).apply(is_descending).fillna(0).apply(lambda x: "NEG" if x > 0 else "no").to_list()
df1["ExpenditureOutlook"] = df1.groupby("ID").Expenditure.rolling(3).apply(is_ascending).fillna(0).apply(lambda x: "POS" if x > 0 else "no").to_list()
df1 = df1.set_index(["ID", "Date"])
Note: The requirement for "STABLE" is not handled.
Edit:
This is alternative solution:
is_descending = lambda a: np.all(a[:-1] > a[1:])
def is_ascending(a):
if np.all(a[:-1] <= a[1:]):
if a[-1] == a[-2]:
return 2
return 1
return 0
for col in ['Cost', 'Revenue']:
outlook = df[col].unstack(level="ID").rolling(3).apply(is_descending).fillna(0).replace({0.0:"no", 1.0:"NEG"}).unstack().rename(f"{col} outlook")
df = df.join(outlook)
col = "Expenditure"
outlook = df[col].unstack(level="ID").rolling(3).apply(is_ascending).fillna(0).replace({0.0:"no", 1.0:"POS", 2.0:"STABLE"}).unstack().rename(f"{col} outlook")
df = df.join(outlook)
I have the df below and want to identify any two orders that satisfy all the following condtions:
Distance between pickups less than X miles
Distance between dropoffs less Y miles
Difference between order creation times less Z minutes
Would use haversine import haversine to calculate the difference in pickups for each row and difference in dropoffs for each row or order.
The df I currently have looks like the following:
DAY Order pickup_lat pickup_long dropoff_lat dropoff_long created_time
1/3/19 234e 32.69 -117.1 32.63 -117.08 3/1/19 19:00
1/3/19 235d 40.73 -73.98 40.73 -73.99 3/1/19 23:21
1/3/19 253w 40.76 -73.99 40.76 -73.99 3/1/19 15:26
2/3/19 231y 36.08 -94.2 36.07 -94.21 3/2/19 0:14
3/3/19 305g 36.01 -78.92 36.01 -78.95 3/2/19 0:09
3/3/19 328s 36.76 -119.83 36.74 -119.79 3/2/19 4:33
3/3/19 286n 35.76 -78.78 35.78 -78.74 3/2/19 0:43
I want my output df to be any 2 orders or rows that satisfy the above conditions. What I am not sure of is how to calculate that for each row in the dataframe to return any two rows that satisfy those condtions.
I hope I am explaining my desired output correctly. Thanks for looking!
I don't know if it is an optimal solution, but I didn't come up with something different. What I have done:
created dataframe with all possible orders combination,
computed all needed measures and for all of the combinations, I added those measures column to the dataframe,
find the indices of the rows which fulfill the mentioned conditions.
The code:
#create dataframe with all combination
from itertools import combinations
index_comb = list(combinations(trips.index, 2))#trip, your dataframe
col_names = trips.columns
orders1= pd.DataFrame([trips.loc[c[0],:].values for c in index_comb],columns=trips.columns,index = index_comb)
orders2= pd.DataFrame([trips.loc[c[1],:].values for c in index_comb],columns=trips.columns,index = index_comb)
orders2 = orders2.add_suffix('_1')
combined = pd.concat([orders1,orders2],axis=1)
from haversine import haversine
def distance(row):
loc_0 = (row[0],row[1]) # (lat, lon)
loc_1 = (row[2],row[3])
return haversine(loc_0,loc_1,unit='mi')
#pickup diff
pickup_cols = ["pickup_long","pickup_lat","pickup_long_1","pickup_lat_1"]
combined[pickup_cols] = combined[pickup_cols].astype(float)
combined["pickup_dist_mi"] = combined[pickup_cols].apply(distance,axis=1)
#dropoff diff
dropoff_cols = ["dropoff_lat","dropoff_long","dropoff_lat_1","dropoff_long_1"]
combined[dropoff_cols] = combined[dropoff_cols].astype(float)
combined["dropoff_dist_mi"] = combined[dropoff_cols].apply(distance,axis=1)
#creation time diff
combined["time_diff_min"] = abs(pd.to_datetime(combined["created_time"])-pd.to_datetime(combined["created_time_1"])).astype('timedelta64[m]')
#Thresholds
Z = 600
Y = 400
X = 400
#find orders with below conditions
diff_time_Z = combined["time_diff_min"] < Z
pickup_dist_X = combined["pickup_dist_mi"]<X
dropoff_dist_Y = combined["dropoff_dist_mi"]<Y
contitions_idx = diff_time_Z & pickup_dist_X & dropoff_dist_Y
out = combined.loc[contitions_idx,["Order","Order_1","time_diff_min","dropoff_dist_mi","pickup_dist_mi"]]
The output for your data:
Order Order_1 time_diff_min dropoff_dist_mi pickup_dist_mi
(0, 5) 234e 328s 573.0 322.988195 231.300179
(1, 2) 235d 253w 475.0 2.072803 0.896893
(4, 6) 305g 286n 34.0 19.766096 10.233550
Hope I understand you well and that will help.
Using your dataframe as above. Drop the index. I'm presuming your created_time column is in datetime format.
import pandas as pd
from geopy.distance import geodesic
Cross merge the dataframe to get all possible combinations of 'Order'.
df_all = pd.merge(df.assign(key=0), df.assign(key=0), on='key').drop('key', axis=1)
Remove all the rows where the orders are equal.
df_all = df_all[-(df_all['Order_x'] == df_all['Order_y'])].copy()
Drop duplicate rows where Order_x, Order_y == [a, b] and [b, a]
# drop duplicate rows
# first combine Order_x and Order_y into a sorted list, and combine into a string
df_all['dup_order'] = df_all[['Order_x', 'Order_y']].values.tolist()
df_all['dup_order'] = df_all['dup_order'].apply(lambda x: "".join(sorted(x)))
# drop the duplicates and reset the index
df_all = df_all.drop_duplicates(subset=['dup_order'], keep='first')
df_all.reset_index(drop=True)
Create a column calculate the time difference in minutes.
df_all['time'] = (df_all['dt_ceated_x'] - df_all['dt_ceated_y']).abs().astype('timedelta64[m]')
Create a column and calculate the distance between drop offs.
df_all['dropoff'] = df_all.apply(
(lambda row: geodesic(
(row['dropoff_lat_x'], row['dropoff_long_x']),
(row['dropoff_lat_x'], row['dropoff_long_y'])
).miles),
axis=1
)
Create a column and calculate the distance between pickups.
df_all['pickup'] = df_all.apply(
(lambda row: geodesic(
(row['pickup_lat_x'], row['pickup_long_x']),
(row['pickup_lat_x'], row['pickup_long_y'])
).miles),
axis=1
)
Filter the results as desired.
X = 1500
Y = 2000
Z = 100
mask_pickups = df_all['pickup'] < X
mask_dropoff = df_all['dropoff'] < Y
mask_time = df_all['time'] < Z
print(df_all[mask_pickups & mask_dropoff & mask_time][['Order_x', 'Order_y', 'time', 'dropoff', 'pickup']])
Order_x Order_y time dropoff pickup
10 235d 231y 53.0 1059.026620 1059.026620
11 235d 305g 48.0 260.325370 259.275948
13 235d 286n 82.0 249.306279 251.929905
25 231y 305g 5.0 853.308110 854.315567
27 231y 286n 29.0 865.026077 862.126593
34 305g 286n 34.0 11.763787 7.842526