Is it possible to compare operators like `(+), (-)` in haskell in the following way? - haskell

The elem command allows us to do the following:
elem 1 [1,2,3] = True
elem (Just 4) [(Just 5)] = False
My question is if this is possible to do on math operators.
For example:
elem (+) [(+), (-), div]
It does not seem like it is possible from definition of elem :: (Eq a, Foldable t) => a -> t a -> Bool, and (+) is of Num a => a -> a -> a.
Then how can one test this?

Yes, the universe package offers equality checking for total functions on finite domain -- at a price.
Data.Universe.Instances.Reverse Data.Word> elem (+) [(+), (-), (*) :: Word8 -> Word8 -> Word8]
True
Data.Universe.Instances.Reverse Data.Word> elem (+) [(-), (*) :: Word8 -> Word8 -> Word8]
False
What price? Comparison is done by applying the function to all possible inputs and comparing the corresponding outputs. In the case of Word8 there's only about ~60k inputs, so it's feasible to do it before you blink, but don't try that first one on Int -> Int -> Int...

In general, equality of functions is a big can of worms that you don't want to open. However, for numerical operators it is actually quite common to follow the symbolic-manipulation tradition of considering functions not so much as value mappings but as algebraic expressions, and those can in a naïve but not completely unreasonable way be compared efficiently. This requires a suitable symbolic “reflection type”; here with simple-reflect: you could do
{-# LANGUAGE FlexibleInstances #-}
import Debug.SimpleReflect
instance Eq (Expr -> Expr -> Expr) where
j == k = j magicL magicR == k magicL magicR
where magicL = 6837629875629876529923867
magicR = 9825763982763958726923876
main = print $ (+) `elem` [(+), (*), div :: Expr->Expr->Expr]
This is still a heuristic which might yield false positives, but it does work for your example and also for more involved ones. Note however that it does not consider arithmetic laws in any way, so it will give e.g. (+) /= flip (+).
I would recommend to try to solve your problem in a way that doesn't require equality of Haskell functions.

Related

Conditions on list comprehension using Haskell and SBV

I want to write a Haskell list comprehension with a condition on symbolic expressions (SBV). I reproduced the problem with the following small example.
import Data.SBV
allUs :: [SInteger]
allUs = [0,1,2]
f :: SInteger -> SBool
f 0 = sTrue
f 1 = sFalse
f 2 = sTrue
someUs :: [SInteger]
someUs = [u | u <- allUs, f u == sTrue]
with show someUs, this gives the following error
*** Data.SBV: Comparing symbolic values using Haskell's Eq class!
***
*** Received: 0 :: SInteger == 0 :: SInteger
*** Instead use: 0 :: SInteger .== 0 :: SInteger
***
*** The Eq instance for symbolic values are necessiated only because
*** of the Bits class requirement. You must use symbolic equality
*** operators instead. (And complain to Haskell folks that they
*** remove the 'Eq' superclass from 'Bits'!.)
CallStack (from HasCallStack):
error, called at ./Data/SBV/Core/Symbolic.hs:1009:23 in sbv-8.8.5-IR852OLMhURGkbvysaJG5x:Data.SBV.Core.Symbolic
Changing the condition into f u .== sTrue also gives an error
<interactive>:8:27: error:
• Couldn't match type ‘SBV Bool’ with ‘Bool’
Expected type: Bool
Actual type: SBool
• In the expression: f u .== sTrue
In a stmt of a list comprehension: f u .== sTrue
In the expression: [u | u <- allUs, f u .== sTrue]
How to get around this problem?
Neither your f nor your someUs are symbolically computable as written. Ideally, these should be type-errors, rejected out-of-hand. This is due to the fact that symbolic values cannot be instances of the Eq class: Why? Because determining equality of symbolic values requires a call to the underlying solver; so the result cannot be Bool; it should really be SBool. But Haskell doesn't allow generalized guards in pattern-matching to allow for that possibility. (And there are good reasons for that too, so it's not really Haskell's fault here. It's just that the two styles of programming don't work well all that great together.)
You can ask why SBV makes symbolic values an instance of the Eq class. The only reason why it's an instance of Eq is what the error message is telling you: Because we want them to be instances of the Bits class; which has Eq as a superclass requirement. But that's a whole another discussion.
Based on this, how can you write your functions in SBV? Here's how you'd code f in the symbolic style:
f :: SInteger -> SBool
f i = ite (i .== 0) sTrue
$ ite (i .== 1) sFalse
$ ite (i .== 2) sTrue
$ sFalse -- arbitrarily filled to make the function total
Ugly, but this is the only way to write it unless you want to play some quasi-quoting tricks.
Regarding someUs: This isn't something you can directly write symbolically either: This is known as a spine-concrete list. And there's no way for SBV to know how long your resulting list would be without actually running the solver on individual elements. In general you cannot do filter like functions on a spine-concrete list with symbolic elements.
The solution is to use what's known as a symbolic list and a bounded-list abstraction. This isn't very satisfactory, but is the best you can do to avoid termination problems:
{-# LANGUAGE OverloadedLists #-}
import Data.SBV
import Data.SBV.List
import Data.SBV.Tools.BoundedList
f :: SInteger -> SBool
f i = ite (i .== 0) sTrue
$ ite (i .== 1) sFalse
$ ite (i .== 2) sTrue
$ sFalse -- arbitrarily filled to make the function total
allUs :: SList Integer
allUs = [0,1,2]
someUs :: SList Integer
someUs = bfilter 10 f allUs
When I run this, I get:
*Main> someUs
[0,2] :: [SInteger]
But you'll ask what's that number 10 in the call to bfilter? Well, the idea is that all lists are assumed to have some sort of an upper bound on their length, and the Data.SBV.Tools.BoundedList exports a bunch of methods to deal with them easily; all taking a bound parameter. So long as the inputs are at most this length long, they'll work correctly. There's no guarantee as to what happens if your list is longer than the bound given. (In general it'll chop off your lists at the bound, but you should not rely on that behavior.)
There's a worked-out example of uses of such lists in coordination with BMC (bounded-model-checking) at https://hackage.haskell.org/package/sbv-8.12/docs/Documentation-SBV-Examples-Lists-BoundedMutex.html
To sum up, dealing with lists in a symbolic context comes with some costs in modeling and how much you can do, due to restrictions in Haskell (where Bool is a fixed type instead of a class), and underlying solvers, which cannot deal with recursively defined functions all that well. The latter is mainly due to the fact that such proofs require induction, and SMT-solvers cannot do induction out-of-the-box. But if you follow the rules of the game using BMC like ideas, you can handle practical instances of the problem up to reasonable bounds.
(.==) takes two instances of EqSymbolic, returning an SBool. Inside a list comprehension, conditionals are implemented using the guard function.
Here's what it looks like:
guard :: Alternative f => Bool -> f ()
guard False = empty
guard True = pure ()
For lists, empty is [], and pure () returns a singleton list [()]. Any member of the list that evaluates to False will return an empty list instead of a unit item, excluding it from computations down the chain.
[True, False, True] >>= guard
= concatMap guard [True, False, True]
= concat $ map guard [True, False, True]
= concat $ [[()], [], [()]]
= [(), ()]
The second branch is then excluded when the context is flattened, so it's "pruned" from the computation.
It seems like you have two problems here - when you pattern match in f, you're doing a comparison using the Eq class. That's where the SBV error is coming from. Since your values are close together, you could use select, which takes a list of items, a default, an expression which evaluates to an index, and attempt to take the indexth item from that list.
You could rewrite f as
f :: SInteger -> SBool
f = select [sTrue, sFalse, sTrue] sFalse
The second problem is that guards explicitly look for Bool, but (.==) still returns an SBool. Looking at Data.SBV, you should be able to coerce that into a regular Bool using unliteral, which attempts to unwrap an SBV value into an equivalent Haskell one.
fromSBool :: SBool -> Bool
fromSBool = fromMaybe False . unliteral
someUs :: [SInteger]
someUs = [u | u <- allUs, fromSBool (f u)]
-- [0 :: SInteger, 2 :: SInteger]

Getting all function arguments in haskel as list

Is there a way in haskell to get all function arguments as a list.
Let's supose we have the following program, where we want to add the two smaller numbers and then subtract the largest. Suppose, we can't change the function definition of foo :: Int -> Int -> Int -> Int. Is there a way to get all function arguments as a list, other than constructing a new list and add all arguments as an element of said list? More importantly, is there a general way of doing this independent of the number of arguments?
Example:
module Foo where
import Data.List
foo :: Int -> Int -> Int -> Int
foo a b c = result!!0 + result!!1 - result!!2 where result = sort ([a, b, c])
is there a general way of doing this independent of the number of arguments?
Not really; at least it's not worth it. First off, this entire idea isn't very useful because lists are homogeneous: all elements must have the same type, so it only works for the rather unusual special case of functions which only take arguments of a single type.
Even then, the problem is that “number of arguments” isn't really a sensible concept in Haskell, because as Willem Van Onsem commented, all functions really only have one argument (further arguments are actually only given to the result of the first application, which has again function type).
That said, at least for a single argument- and final-result type, it is quite easy to pack any number of arguments into a list:
{-# LANGUAGE FlexibleInstances #-}
class UsingList f where
usingList :: ([Int] -> Int) -> f
instance UsingList Int where
usingList f = f []
instance UsingList r => UsingList (Int -> r) where
usingList f a = usingList (f . (a:))
foo :: Int -> Int -> Int -> Int
foo = usingList $ (\[α,β,γ] -> α + β - γ) . sort
It's also possible to make this work for any type of the arguments, using type families or a multi-param type class. What's not so simple though is to write it once and for all with variable type of the final result. The reason being, that would also have to handle a function as the type of final result. But then, that could also be intepreted as “we still need to add one more argument to the list”!
With all respect, I would disagree with #leftaroundabout's answer above. Something being
unusual is not a reason to shun it as unworthy.
It is correct that you would not be able to define a polymorphic variadic list constructor
without type annotations. However, we're not usually dealing with Haskell 98, where type
annotations were never required. With Dependent Haskell just around the corner, some
familiarity with non-trivial type annotations is becoming vital.
So, let's take a shot at this, disregarding worthiness considerations.
One way to define a function that does not seem to admit a single type is to make it a method of a
suitably constructed class. Many a trick involving type classes were devised by cunning
Haskellers, starting at least as early as 15 years ago. Even if we don't understand their
type wizardry in all its depth, we may still try our hand with a similar approach.
Let us first try to obtain a method for summing any number of Integers. That means repeatedly
applying a function like (+), with a uniform type such as a -> a -> a. Here's one way to do
it:
class Eval a where
eval :: Integer -> a
instance (Eval a) => Eval (Integer -> a) where
eval i = \y -> eval (i + y)
instance Eval Integer where
eval i = i
And this is the extract from repl:
λ eval 1 2 3 :: Integer
6
Notice that we can't do without explicit type annotation, because the very idea of our approach is
that an expression eval x1 ... xn may either be a function that waits for yet another argument,
or a final value.
One generalization now is to actually make a list of values. The science tells us that
we may derive any monoid from a list. Indeed, insofar as sum is a monoid, we may turn arguments to
a list, then sum it and obtain the same result as above.
Here's how we can go about turning arguments of our method to a list:
class Eval a where
eval2 :: [Integer] -> Integer -> a
instance (Eval a) => Eval (Integer -> a) where
eval2 is i = \j -> eval2 (i:is) j
instance Eval [Integer] where
eval2 is i = i:is
This is how it would work:
λ eval2 [] 1 2 3 4 5 :: [Integer]
[5,4,3,2,1]
Unfortunately, we have to make eval binary, rather than unary, because it now has to compose two
different things: a (possibly empty) list of values and the next value to put in. Notice how it's
similar to the usual foldr:
λ foldr (:) [] [1,2,3,4,5]
[1,2,3,4,5]
The next generalization we'd like to have is allowing arbitrary types inside the list. It's a bit
tricky, as we have to make Eval a 2-parameter type class:
class Eval a i where
eval2 :: [i] -> i -> a
instance (Eval a i) => Eval (i -> a) i where
eval2 is i = \j -> eval2 (i:is) j
instance Eval [i] i where
eval2 is i = i:is
It works as the previous with Integers, but it can also carry any other type, even a function:
(I'm sorry for the messy example. I had to show a function somehow.)
λ ($ 10) <$> (eval2 [] (+1) (subtract 2) (*3) (^4) :: [Integer -> Integer])
[10000,30,8,11]
So far so good: we can convert any number of arguments into a list. However, it will be hard to
compose this function with the one that would do useful work with the resulting list, because
composition only admits unary functions − with some trickery, binary ones, but in no way the
variadic. Seems like we'll have to define our own way to compose functions. That's how I see it:
class Ap a i r where
apply :: ([i] -> r) -> [i] -> i -> a
apply', ($...) :: ([i] -> r) -> i -> a
($...) = apply'
instance Ap a i r => Ap (i -> a) i r where
apply f xs x = \y -> apply f (x:xs) y
apply' f x = \y -> apply f [x] y
instance Ap r i r where
apply f xs x = f $ x:xs
apply' f x = f [x]
Now we can write our desired function as an application of a list-admitting function to any number
of arguments:
foo' :: (Num r, Ord r, Ap a r r) => r -> a
foo' = (g $...)
where f = (\result -> (result !! 0) + (result !! 1) - (result !! 2))
g = f . sort
You'll still have to type annotate it at every call site, like this:
λ foo' 4 5 10 :: Integer
-1
− But so far, that's the best I can do.
The more I study Haskell, the more I am certain that nothing is impossible.

How to "iterate" over a function whose type changes among iteration but the formal definition is the same

I have just started learning Haskell and I come across the following problem. I try to "iterate" the function \x->[x]. I expect to get the result [[8]] by
foldr1 (.) (replicate 2 (\x->[x])) $ (8 :: Int)
This does not work, and gives the following error message:
Occurs check: cannot construct the infinite type: a ~ [a]
Expected type: [a -> a]
Actual type: [a -> [a]]
I can understand why it doesn't work. It is because that foldr1 has type signature foldr1 :: Foldable t => (a -> a -> a) -> a -> t a -> a, and takes a -> a -> a as the type signature of its first parameter, not a -> a -> b
Neither does this, for the same reason:
((!! 2) $ iterate (\x->[x]) .) id) (8 :: Int)
However, this works:
(\x->[x]) $ (\x->[x]) $ (8 :: Int)
and I understand that the first (\x->[x]) and the second one are of different type (namely [Int]->[[Int]] and Int->[Int]), although formally they look the same.
Now say that I need to change the 2 to a large number, say 100.
My question is, is there a way to construct such a list? Do I have to resort to meta-programming techniques such as Template Haskell? If I have to resort to meta-programming, how can I do it?
As a side node, I have also tried to construct the string representation of such a list and read it. Although the string is much easier to construct, I don't know how to read such a string. For example,
read "[[[[[8]]]]]" :: ??
I don't know how to construct the ?? part when the number of nested layers is not known a priori. The only way I can think of is resorting to meta-programming.
The question above may not seem interesting enough, and I have a "real-life" case. Consider the following function:
natSucc x = [Left x,Right [x]]
This is the succ function used in the formal definition of natural numbers. Again, I cannot simply foldr1-replicate or !!-iterate it.
Any help will be appreciated. Suggestions on code styles are also welcome.
Edit:
After viewing the 3 answers given so far (again, thank you all very much for your time and efforts) I realized this is a more general problem that is not limited to lists. A similar type of problem can be composed for each valid type of functor (what if I want to get Just Just Just 8, although that may not make much sense on its own?).
You'll certainly agree that 2 :: Int and 4 :: Int have the same type. Because Haskell is not dependently typed†, that means foldr1 (.) (replicate 2 (\x->[x])) (8 :: Int) and foldr1 (.) (replicate 4 (\x->[x])) (8 :: Int) must have the same type, in contradiction with your idea that the former should give [[8]] :: [[Int]] and the latter [[[[8]]]] :: [[[[Int]]]]. In particular, it should be possible to put both of these expressions in a single list (Haskell lists need to have the same type for all their elements). But this just doesn't work.
The point is that you don't really want a Haskell list type: you want to be able to have different-depth branches in a single structure. Well, you can have that, and it doesn't require any clever type system hacks – we just need to be clear that this is not a list, but a tree. Something like this:
data Tree a = Leaf a | Rose [Tree a]
Then you can do
Prelude> foldr1 (.) (replicate 2 (\x->Rose [x])) $ Leaf (8 :: Int)
Rose [Rose [Leaf 8]]
Prelude> foldr1 (.) (replicate 4 (\x->Rose [x])) $ Leaf (8 :: Int)
Rose [Rose [Rose [Rose [Leaf 8]]]]
†Actually, modern GHC Haskell has quite a bunch of dependently-typed features (see DaniDiaz' answer), but these are still quite clearly separated from the value-level language.
I'd like to propose a very simple alternative which doesn't require any extensions or trickery: don't use different types.
Here is a type which can hold lists with any number of nestings, provided you say how many up front:
data NestList a = Zero a | Succ (NestList [a]) deriving Show
instance Functor NestList where
fmap f (Zero a) = Zero (f a)
fmap f (Succ as) = Succ (fmap (map f) as)
A value of this type is a church numeral indicating how many layers of nesting there are, followed by a value with that many layers of nesting; for example,
Succ (Succ (Zero [['a']])) :: NestList Char
It's now easy-cheesy to write your \x -> [x] iteration; since we want one more layer of nesting, we add one Succ.
> iterate (\x -> Succ (fmap (:[]) x)) (Zero 8) !! 5
Succ (Succ (Succ (Succ (Succ (Zero [[[[[8]]]]])))))
Your proposal for how to implement natural numbers can be modified similarly to use a simple recursive type. But the standard way is even cleaner: just take the above NestList and drop all the arguments.
data Nat = Zero | Succ Nat
This problem indeed requires somewhat advanced type-level programming.
I followed #chi's suggestion in the comments, and searched for a library that provided inductive type-level naturals with their corresponding singletons. I found the fin library, which is used in the answer.
The usual extensions for type-level trickery:
{-# language DataKinds, PolyKinds, KindSignatures, ScopedTypeVariables, TypeFamilies #-}
Here's a type family that maps a type-level natural and an element type to the type of the corresponding nested list:
import Data.Type.Nat
type family Nested (n::Nat) a where
Nested Z a = [a]
Nested (S n) a = [Nested n a]
For example, we can test from ghci that
*Main> :kind! Nested Nat3 Int
Nested Nat3 Int :: *
= [[[[Int]]]]
(Nat3 is a convenient alias defined in Data.Type.Nat.)
And here's a newtype that wraps the function we want to construct. It uses the type family to express the level of nesting
newtype Iterate (n::Nat) a = Iterate { runIterate :: (a -> [a]) -> a -> Nested n a }
The fin library provides a really nifty induction1 function that lets us compute a result by induction on Nat. We can use it to compute the Iterate that corresponds to every Nat. The Nat is passed implicitly, as a constraint:
iterate' :: forall n a. SNatI n => Iterate (n::Nat) a
iterate' =
let step :: forall m. SNatI m => Iterate m a -> Iterate (S m) a
step (Iterate recN) = Iterate (\f a -> [recN f a])
in induction1 (Iterate id) step
Testing the function in ghci (using -XTypeApplications to supply the Nat):
*Main> runIterate (iterate' #Nat3) pure True
[[[[True]]]]

Choosing the non-empty Monoid

I need a function which will choose a non-empty monoid. For a list this will mean the following behaviour:
> [1] `mor` []
[1]
> [1] `mor` [2]
[1]
> [] `mor` [2]
[2]
Now, I've actually implemented it but am wondering wether there exists some standard alternative, because it seems to be a kind of a common case. Unfortunately Hoogle doesn't help.
Here's my implementation:
mor :: (Eq a, Monoid a) => a -> a -> a
mor a b = if a /= mempty then a else b
If your lists contain at most one element, they're isomorphic to Maybe, and for that there's the "first non empty" monoid: First from Data.Monoid. It's a wrapper around Maybe a values, and mappend returns the first Just value:
import Data.Monoid
main = do
print $ (First $ Just 'a') <> (First $ Just 'b')
print $ (First $ Just 'a') <> (First Nothing)
print $ (First Nothing) <> (First $ Just 'b')
print $ (First Nothing) <> (First Nothing :: First Char)
==> Output:
First {getFirst = Just 'a'}
First {getFirst = Just 'a'}
First {getFirst = Just 'b'}
First {getFirst = Nothing}
Conversion [a] -> Maybe a is achieved using Data.Maybe.listToMaybe.
On a side note: this one does not constrain the typeclass of the wrapped type; in your question, you need an Eq instance to compare for equality with mempty. This comes at the cost of having the Maybe type, of course.
[This is really a long comment rather than an answer]
In my comment, when I said "monoidal things have no notion of introspection" - I meant that you can't perform analysis (pattern matching, equality, <, >, etc.) on monoids. This is obvious of course - the API of Monoids is only unit (mempty) and an operation mappend (more abstractly <>) that takes two monodial things and returns one. The definition of mappend for a type is free to use case analysis, but afterwards all you can do with monoidal things is use the Monoid API.
It's something of a folklore in the Haskell community to avoid inventing things, prefering instead to use objects from mathematics and computer science (including functional programming history). Combining Eq (which needs analysis of is arguments) and Monoid introduces a new class of things - monoids that support enough introspection to allow equality; and at this point there is a reasonable argument that an Eq-Monoid thing goes against the spirit of its Monoid superclass (Monoids are opaque). As this is both a new class of objects and potentially contentious - a standard implementation won't exist.
First, your mor function looks rather suspicious because it requires a Monoid but never uses mappend, and so it is significantly more constrained than necessary.
mor :: (Eq a, Monoid a) => a -> a -> a
mor a b = if a /= mempty then a else b
You could accomplish the same thing with merely a Default constraint:
import Data.Default
mor :: (Eq a, Default a) => a -> a -> a
mor a b = if a /= def then a else b
and I think that any use of Default should also be viewed warily because, as I believe many Haskellers complain, it is a class without principles.
My second thought is that it seems that the data type you're really dealing with here is Maybe (NonEmpty a), not [a], and the Monoid you're actually talking about is First.
import Data.Monoid
morMaybe :: Maybe a -> Maybe a -> Maybe a
morMaybe x y = getFirst (First x <> First y)
And so then we could use that with lists, as in your example, under the (nonEmpty, maybe [] toList) isomorphism between [a] and Maybe (NonEmpty a):
import Data.List.NonEmpty
morList :: [t] -> [t] -> [t]
morList x y = maybe [] toList (nonEmpty x `mor` nonEmpty y)
λ> mor'list [1] []
[1]
λ> mor'list [] [2]
[2]
λ> mor'list [1] [2]
[1]
(I'm sure that somebody more familiar with the lens library could provide a more impressive concise demonstration here, but I don't immediately know how.)
You could extend Monoid with a predicate to test whether an element is an identity.
class Monoid a => TestableMonoid a
where
isMempty :: a -> Bool
morTestable :: a -> a -> a
morTestable x y = if isMempty x then y else x
Not every monoid can have an instance of TestableMonoid, but plenty (including list) can.
instance TestableMonoid [a]
where
isMempty = null
We could even then write a newtype wrapper with a Monoid:
newtype Mor a = Mor { unMor :: a }
instance TestableMonoid a => Monoid (Mor a)
where
mempty = Mor mempty
Mor x `mappend` Mor y = Mor (morTestable x y)
λ> unMor (Mor [1] <> Mor [])
[1]
λ> unMor (Mor [] <> Mor [2])
[2]
λ> unMor (Mor [1] <> Mor [2])
[1]
So that leaves open the question of whether the TestableMonoid class deserves to exist. It certainly seems like a more "algebraically legitimate" class than Default, at least, because we can give it a law that relates it to Monoid:
isEmpty x iff mappend x = id
But I do question whether this actually has any common use cases. As I said earlier, the Monoid constraint is superfluous for your use case because you never mappend. So we should ask, then, can we envision a situation in which one might need both mappend and isMempty, and thus have a legitimate need for a TestableMonoid constraint? It's possible I'm being shortsighted here, but I can't envision a case.
I think this is because of something Stephen Tetley touched on when he said that this "goes against the spirit of its Monoid." Tilt your head at the type signature of mappend with a slightly different parenthesization:
mappend :: a -> (a -> a)
mappend is a mapping from members of a set a to functions a -> a. A monoid is a way of viewing values as functions over those values. The monoid is a view of the world of a only through the window of what these functions let us see. And functions are very limited in what they let us see. The only thing we ever do with them is apply them. We never ask anything else of a function (as Stephen said, we have no introspection into them). So although, yes, you can bolt anything you want onto a subclass, in this case the thing we're bolting on feels very different in character from the base class we are extending, and it feels unlikely that there would be much intersection between the use cases of functions and the use cases of things that have general equality or a predicate like isMempty.
So finally I want to come back around to the simple and precise way to write this: Write code at the value level and stop worrying classes. You don't need Monoid and you don't need Eq, all you need is an additional argument:
morSimple :: (t -> Bool) -- ^ Determine whether a value should be discarded
-> t -> t -> t
morSimple f x y = if f x then y else x
λ> morSimple null [1] []
[1]
λ> morSimple null [1] [2]
[1]
λ> morSimple null [] [2]
[2]

Random-Pivot Quicksort in Haskell

Is it possible to implement a quicksort in Haskell (with RANDOM-PIVOT) that still has a simple Ord a => [a]->[a] signature?
I'm starting to understand Monads, and, for now, I'm kind of interpreting monads as somethink like a 'command pattern', which works great for IO.
So, I understand that a function that returns a random number should actually return a monadic value like IO, because, otherwise, it would break referential transparency. I also understand that there should be no way to 'extract' the random integer from the returned monadic value, because, otherwise, it would, again, break referential transparency.
But yet, I still think that it should be possible to implement a 'pure' [a]->[a] quicksort function, even if it uses random pivot, because, it IS referential transparent. From my point of view, the random pivot is just a implementation detail, and shouldn't change the function's signature
OBS: I'm not actually interested in the specific quicksort problem (so, I don't want to sound rude but I'm not looking for "use mergesort" or "random pivot doesn't increase performance in practice" kind of answers) I'm actually interested in how to implement a 'pure' function that uses 'impure' functions inside it, in cases like quicksort, where I can assure that the function actually is a pure one.
Quicksort is just a good example.
You are making a false assumption that picking the pivot point is just an implementation detail. Consider a partial ordering on a set. Like a quicksort on cards where
card a < card b if the face value is less but if you were to evaluate booleans:
4 spades < 4 hearts (false)
4 hearts < 4 spades (false)
4 hearts = 4 spades (false)
In that case the choice of pivots would determine the final ordering of the cards. In precisely the same way
for a function like
a = get random integer
b = a + 3
print b
is determined by a. If you are randomly choosing something then your computation is or could be non deterministic.
OK, check this out.
Select portions copied form the hashable package, and voodoo magic language pragmas
{-# LANGUAGE FlexibleInstances, UndecidableInstances, NoMonomorphismRestriction, OverlappingInstances #-}
import System.Random (mkStdGen, next, split)
import Data.List (foldl')
import Data.Bits (shiftL, xor)
class Hashable a where
hash :: a -> Int
instance (Integral a) => Hashable a where
hash = fromIntegral
instance Hashable Char where
hash = fromEnum
instance (Hashable a) => Hashable [a] where
hash = foldl' combine 0 . map hash
-- ask the authors of the hashable package about this if interested
combine h1 h2 = (h1 + h1 `shiftL` 5) `xor` h2
OK, so now we can take a list of anything Hashable and turn it into an Int. I've provided Char and Integral a instances here, more and better instances are in the hashable packge, which also allows salting and stuff.
This is all just so we can make a number generator.
genFromHashable = mkStdGen . hash
So now the fun part. Let's write a function that takes a random number generator, a comparator function, and a list. Then we'll sort the list by consulting the generator to select a pivot, and the comparator to partition the list.
qSortByGen _ _ [] = []
qSortByGen g f xs = qSortByGen g'' f l ++ mid ++ qSortByGen g''' f r
where (l, mid, r) = partition (`f` pivot) xs
pivot = xs !! (pivotLoc `mod` length xs)
(pivotLoc, g') = next g
(g'', g''') = split g'
partition f = foldl' step ([],[],[])
where step (l,mid,r) x = case f x of
LT -> (x:l,mid,r)
EQ -> (l,x:mid,r)
GT -> (l,mid,x:r)
Library functions: next grabs an Int from the generator, and produces a new generator. split forks the generator into two distinct generators.
My functions: partition uses f :: a -> Ordering to partition the list into three lists. If you know folds, it should be quite clear. (Note that it does not preserve the initial ordering of the elements in the sublists; it reverses them. Using a foldr could remedy this were it an issue.) qSortByGen works just like I said before: consult the generator for the pivot, partition the list, fork the generator for use in the two recursive calls, recursively sort the left and right sides, and concatenate it all together.
Convenience functions are easy to compose from here
qSortBy f xs = qSortByGen (genFromHashable xs) f xs
qSort = qSortBy compare
Notice the final function's signature.
ghci> :t qSort
qSort :: (Ord a, Hashable a) => [a] -> [a]
The type inside the list must implement both Hashable and Ord. There's the "pure" function you were asking for, with one logical added requirement. The more general functions are less restrictive in their requirements.
ghci> :t qSortBy
qSortBy :: (Hashable a) => (a -> a -> Ordering) -> [a] -> [a]
ghci> :t qSortByGen
qSortByGen
:: (System.Random.RandomGen t) =>
t -> (a -> a -> Ordering) -> [a] -> [a]
Final notes
qSort will behave exactly the same way for all inputs. The "random" pivot selection is. in fact, deterministic. But it is obscured by hashing the list and then seeding a random number generator, making it "random" enough for me. ;)
qSort also only works for lists with length less than maxBound :: Int, which ghci tells me is 9,223,372,036,854,775,807. I thought there would be an issue with negative indexes, but in my ad-hoc testing I haven't run into it yet.
Or, you can just live with the IO monad for "truer" randomness.
qSortIO xs = do g <- getStdGen -- add getStdGen to your imports
return $ qSortByGen g compare xs
ghci> :t qSortIO
qSortIO :: (Ord a) => [a] -> IO [a]
ghci> qSortIO "Hello world"
" Hdellloorw"
ghci> qSort "Hello world"
" Hdellloorw"
In such cases, where you know that the function is referentially transparent, but you can't proof it to the compiler, you may use the function unsafePerformIO :: IO a -> a from the module Data.Unsafe.
For instance, you may use unsafePerformIO to get an initial random state and then do anything using just this state.
But please notice: Don't use it if it's not really needed. And even then, think twice about it. unsafePerformIO is somewhat the root of all evil, since it's consequences can be dramatical - anything is possible from coercing different types to crashing the RTS using this function.
Haskell provides the ST monad to perform non-referentially-transparent actions with a referentially transparent result.
Note that it doesn't enforce referential transparency; it just insures that potentially non-referentially-transparent temporary state can't leak out. Nothing can prevent you from returning manipulated pure input data that was rearranged in a non-reproducible way. Best is to implement the same thing in both ST and pure ways and use QuickCheck to compare them on random inputs.

Resources