Why won't bokeh figure update with new data? - python-3.x

I'm creating a bokeh application that pulls data from Quandl stock prices and changes the plot based the stock symbol the user inputs. I used an example from this bokeh tuorial as a model.
Everything is working except the plot won't update when I input a new symbol.
I've tried passing the new data as a dictionary (before I was just passing a DataFrame to ColumnDataSource(), but no luck.
import pandas as pd
import numpy as np
from bokeh.models.widgets import TextInput, Select
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure
from bokeh.layouts import column, row
from bokeh.io import show, output_notebook
import quandl
This is the function to get the data:
def get_data(symbol):
dictionary = {}
data = quandl.get('WIKI/' + symbol, collapse = 'annual', returns='numpy')
df = pd.DataFrame(data)
dictionary['date'] = list(df.Date.values)
dictionary['high'] = list(df.High.values)
return dictionary
And this is a function for the plot:
def modify_doc(doc):
symbol = 'AAWW'
source = ColumnDataSource(data = get_data(symbol))
p = figure(x_axis_type='datetime', title='Stock Price', plot_height=350, plot_width=800)
p.xgrid.grid_line_color=None
p.ygrid.grid_line_alpha=0.5
p.xaxis.axis_label = 'year'
p.yaxis.axis_label = 'close'
r = p.line(source.data['date'],
source.data['high'],
line_color = 'navy')
select = Select(title="Color", value="navy", options=COLORS)
input = TextInput(title="Ticker Symbol", value=symbol)
def update_symbol(attrname, old, new):
source.data = get_data(input.value)
input.on_change('value', update_symbol)
layout = column(row(input, width=400), row(p))
doc.add_root(layout)
show(modify_doc)
I would think that the plot would update when the new symbol is entered, but it just stays the same.
Any thoughts?

Your code looks like Bokeh server application but you use show() what doesn't look good to me. You are also trying to update the figure by assigning new data to the source but you did not pass your source to the figure object so it won't have any effect. Could you try if this code works for you? (should work for Bokeh v1.0.4)
import random
import pandas as pd
from tornado.ioloop import IOLoop
from bokeh.server.server import Server
from bokeh.application import Application
from bokeh.application.handlers.function import FunctionHandler
from bokeh.plotting import figure, ColumnDataSource
from bokeh.models.widgets import TextInput
from bokeh.layouts import column, row
def make_document(doc):
symbol = 'AAWW'
def get_data(symbol):
dictionary = {}
data = quandl.get('WIKI/' + symbol, collapse = 'annual', returns = 'numpy')
df = pd.DataFrame(data)
dictionary['date'] = list(df.Date.values)
dictionary['high'] = list(df.High.values)
return dictionary
source = ColumnDataSource(data = get_data(symbol))
p = figure(x_axis_type = 'datetime', title = 'Stock Price', plot_height = 350, plot_width = 800)
p.xgrid.grid_line_color = None
p.ygrid.grid_line_alpha = 0.5
p.xaxis.axis_label = 'year'
p.yaxis.axis_label = 'close'
r = p.line(x = 'date',
y = 'high',
source = source,
line_color = 'navy')
input = TextInput(title = "Ticker Symbol", value = symbol)
def update_symbol(attrname, old, new):
source.data = get_data(input.value)
input.on_change('value', update_symbol)
layout = column(row(input, width = 400), row(p))
doc.add_root(layout)
io_loop = IOLoop.current()
server = Server({'/myapp': Application(FunctionHandler(make_document))}, port = 5001, io_loop = io_loop)
server.start()
server.show('/myapp')
io_loop.start()
Basically the main change is here:
r = p.line(x = 'date',
y = 'high',
source = source,
line_color = 'navy')

Based on the answer I got from Tony, I just had to change one line of code:
r = p.line(x = 'date',
y = 'high',
source = source,
line_color = 'navy')

Related

Not able to update the plot on selection of a value of Select widget of Bokeh Library

I am working on COVID19 analysis and am using a JSON data source. I have converted the json to dataframe. I am working on plotting a daily case, daily death and daily recovered bar chart over a datetime x-axis for each state and the state can be selected using a Select widget. I don't know Javascript so, I am trying to avoid using Javascript callbacks but have been using a function to update the select.value. I am not sure why is the plot not getting updated even when i am running the code on Bokeh server and there are no exceptions raised by the interpreter.
Can someone provide me with any direction or help with what might be causing the issue as I am new to Python and any help is appreciated? Or if there's any other alternative. This code is a derivation from a similar plot on [bokeh discourse][1]
#Creating DataFrame
cases_summary = requests.get('https://api.rootnet.in/covid19-in/stats/history')
json_data = cases_summary.json()
cases_summary=pd.json_normalize(json_data['data'], record_path='regional', meta='day')
cases_summary['day']=pd.to_datetime(cases_summary['day'])
cases_summary['daily deaths']=cases_summary['deaths'].groupby(cases_summary['loc']).diff(1)
cases_summary['daily confirmed']=cases_summary['totalConfirmed'].groupby(cases_summary['loc']).diff(1)
cases_summary['daily discharged']=cases_summary['discharged'].groupby(cases_summary['loc']).diff(1)
#Initializing the first default plot
cases=cases_summary[cases_summary['loc']=='Delhi']
source=ColumnDataSource(data=cases)
a = figure(plot_width=1200, plot_height=700, sizing_mode="scale_both", x_axis_type='datetime')
def make_plot(cases_val):
a.vbar('day', top='daily confirmed', width=timedelta(days=0.5),
legend_label='Daily Confirmed', color='#5e4fa2', source=cases_val)
a.vbar('day', bottom='daily discharged', width=timedelta(days=0.5),
legend_label='Daily Recovered', color='#66c2a5', source=cases_val)
a.vbar('day', bottom='daily deaths', width=timedelta(days=0.5),
legend_label='Daily Deaths', color='#3288bd', source=cases_val)
return a
def update_plot(attr,old,new):
location=select.value
data_loc = cases_summary[cases_summary['loc'] == location]
source = ColumnDataSource(data=dict()).from_df(data_loc)
layout.children[0]=make_plot(source)
select = Select(title="Select State:", value="Delhi", options=cases_summary['loc'].unique().tolist())
plot = make_plot(cases)
controls = column(select)
layout = row(a, controls)
select.on_change('value', update_plot)
curdoc().add_root(layout)
[1]: https://discourse.bokeh.org/t/how-to-update-the-bar-chart-that-has-dataframe-as-source-with-bokeh-select-widget/2031/8
This can be done more simply using a view and a filter. Here is an alternative approach:
import requests
import pandas as pd
from bokeh.plotting import figure
from bokeh.layouts import column, row
from bokeh.io import curdoc
from bokeh.models import *
from datetime import timedelta
cases_summary = requests.get("https://api.rootnet.in/covid19-in/stats/history")
json_data = cases_summary.json()
cases_summary = pd.json_normalize(json_data["data"], record_path="regional", meta="day")
cases_summary["day"] = pd.to_datetime(cases_summary["day"])
cases_summary["daily deaths"] = (
cases_summary["deaths"].groupby(cases_summary["loc"]).diff(1)
)
cases_summary["daily confirmed"] = (
cases_summary["totalConfirmed"].groupby(cases_summary["loc"]).diff(1)
)
cases_summary["daily discharged"] = (
cases_summary["discharged"].groupby(cases_summary["loc"]).diff(1)
)
source = ColumnDataSource(cases_summary)
filter = GroupFilter(column_name='loc',group='Delhi')
view = CDSView(source=source, filters = [filter])
a = figure(
plot_width=1200, plot_height=700, sizing_mode="scale_both", x_axis_type="datetime"
)
a.vbar(
"day",
top="daily confirmed",
width=timedelta(days=0.5),
legend_label="Daily Confirmed",
color="#5e4fa2",
source=source,
view = view
)
a.vbar(
"day",
bottom="daily discharged",
width=timedelta(days=0.5),
legend_label="Daily Recovered",
color="#66c2a5",
source=source,
view = view
)
a.vbar(
"day",
bottom="daily deaths",
width=timedelta(days=0.5),
legend_label="Daily Deaths",
color="#3288bd",
source=source,
view = view
)
def update_plot(attr, old, new):
view.filters = [GroupFilter(column_name='loc',group=select.value)]
select = Select(
title="Select State:", value="Delhi", options=cases_summary["loc"].unique().tolist()
)
controls = column(select)
layout = row(a, controls)
select.on_change("value", update_plot)
curdoc().add_root(layout)

prevent camera resetting after plotting with Plotly-python

I am trying to plot some data for a 3d Quiver or Cone using dash and plotly and I want to update the Graph periodically through an interval Input!
So I managed to animate the graph but the problem is that the camera angle and zoom keep resetting after each update.
i have the following code:
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
from dash.dependencies import Output, Input
import pickle
#reading initial data
with open("shared.pkl", "rb") as f:
quivDic = pickle.load(f)
quiver_3d = go.Cone(x = quivDic["X"], y = quivDic["Y"], z = quivDic["Z"],
u = quivDic["U"], v = quivDic["V"], w = quivDic["W"],
colorscale = 'Blues', name = "testScatter")
data = [quiver_3d]
layout = dict(title ="Test Quiver", showlegend=False, aspectratio=dict(x=1, y=1, z=0.8),
camera_eye=dict(x=1.2, y=1.2, z=0.6))
fig = dict(data=data, layout=layout)
app = dash.Dash()
app.layout = html.Div([
html.Div(html.H4("TEST CONE")),
html.Div(dcc.Graph(id = "testCone", figure=fig)),
dcc.Interval(
id='graph-update',
interval=1000,
n_intervals = 0
),
])
#app.callback(Output('testCone', 'figure'),
[Input('graph-update', 'n_intervals')])
def refresh(n):
#reading new data
with open("shared.pkl", "rb") as f:
quivDic = pickle.load(f)
quiver_3d.x = quivDic["X"]
quiver_3d.y = quivDic["Y"]
quiver_3d.z = quivDic["Z"]
quiver_3d.u = quivDic["U"]
quiver_3d.v = quivDic["V"]
quiver_3d.w = quivDic["W"]
data = [quiver_3d]
#creating new figure
fig = dict(data=data)
return fig
app.run_server(debug=True)
Does anyone know how to avoid this problem?
Ideally I'd like to update the data without redrawing the whole frame, something like "set_data" from matplotlib. Otherwise is there a way to keep track of the latest camera angle and update the layout through the callback?
and Thanks ^^
Yes, you can use the uirevision attribute, as detailed here: https://community.plot.ly/t/preserving-ui-state-like-zoom-in-dcc-graph-with-uirevision/15793

How do I implement a start-stop button / play-resume button for an animation in bokeh?

I am trying to implement a star-stop button for a bokeh animation. I am using bokeh server in combination with the curdoc() function, but so far I haven't had much success.
I am wondering how someone with more experience would do that?
thanks
Here you go. Run with bokeh serve --show app.py (tested on Bokeh v1.0.4)
from bokeh.models import ColumnDataSource, Toggle, Column
from bokeh.plotting import figure, curdoc
from datetime import datetime
import random
source = ColumnDataSource(dict(time = [datetime.now()], value = [random.randint(5, 10)]))
plot = figure(plot_width = 1200, x_axis_type = 'datetime', tools = 'pan,box_select,crosshair,reset,save,wheel_zoom')
plot.line(x = 'time', y = 'value', line_color = 'black', source = source)
toggle = Toggle(label = "Toggle", button_type = "success")
def update():
if toggle.active:
source.stream(dict(time = [datetime.now()], value = [random.randint(5, 10)]))
curdoc().add_root(Column(plot, toggle))
curdoc().add_periodic_callback(update, 1000)
Result:

Trouble loading csv data into bokeh

I am having trouble loading data from a csv file into bokeh, from bokeh database it works, though when I try from a csv file it does not load, so I had been reading but no luck so far.
Thanks in advance
df = pd.read_csv('unemployment1948.csv', delimiter = ',', index_col =
'Year')
df = pd.DataFrame(df)
df.head()
output_notebook()
group = df[35:].groupby('Year')
source = ColumnDataSource(df)
group.describe()
df.columns
#source = ColumnDataSource(df(x=df.loc[15:40].index,
# y=df.loc[15:40].Annual))
p = figure(plot_height=300, plot_width=900, x_range=group,
title='Umployment over the years',
x_axis_label='Year', y_axis_label='Annual')
p.circle(x=index, y='Annual', width=0.9, color ='#35B778' , source=source)
show(p)
Your df is already a pandas DataFrame. Try this:
import os
import pandas as pd
from bokeh.io import show
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure
df = pd.read_csv(os.path.join(os.path.dirname(__file__), "unemployment1948.csv",))
output_notebook()
source = ColumnDataSource(df)
p = figure(plot_height = 300, plot_width = 900,
title = 'Umployment over the years',
x_axis_label = 'Year', y_axis_label = 'Annual')
p.circle(x = 'Year', y = 'Annual', line_width = 0.9, color = '#35B778' , source = source)
show(p)
I learned how to deal with DataFrame and ColumnDateSource, so you can manipulate the data easily and it does not need to use the OS module.
Thanks for the help.
import csv
#import re
import pandas as pd
import numpy as np
#import random
##from collections import Counter, defaultdict
#import random
dfU = pd.read_csv('unemployment1948.csv')
dfU = pd.DataFrame(dfU)
dfU.index
y = dfU.iloc[35:].Year
x = dfU.iloc[35:].Annual
#xRange = dfU.iloc[35:]
source = ColumnDataSource(dfU)
output_notebook()
p = figure(plot_height=300, plot_width=800, title='Unemployment over the years')
p.vbar(x='Year', top='Annual', width=0.9, color ='#35B778' , source=source)
show(p)

Interaction with multiple widgets Bokeh

EDIT: Some users have mentioned that the question is unclear. My objective is to keep track of previous states.
I am trying to create a plot that can be modified using 3 widgets. However, every new widget change does not take into consideration previous widget selections (for example, if a selection is made using widget 1 and then widget 2 is modified, the modification of widget 2 considers the original graph and not the changes made with widget 1).
I am trying to avoid using Custom_JS as I have no experience with Javascript. Is there any way to combine the functions so that any change in the widgets takes into consideration previous widget interactions?
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib
from datetime import date
from ipywidgets import interact
from bokeh.io import push_notebook, show, output_notebook, curdoc
from bokeh.plotting import figure
from bokeh.layouts import column, layout, widgetbox, row
from bokeh.models import ColumnDataSource, HoverTool, CustomJS, Panel
from bokeh.layouts import widgetbox
from bokeh.models.widgets import RangeSlider, Slider, Select,
DateRangeSlider, Tabs
df = pd.read_csv("/Users/danielmontillanavas/Desktop/Tiller/00_Data/SF_may_correct_decimal.csv", sep =',',decimal=',')
df = df.drop(['Unnamed: 0'], axis=1)
df.rename(columns = {'Stamped phone from HS':'phone','Contact Email':'Email','Account Name':'Account_name',
'Opportunity ID':'ID', 'Close Date':'Close_date','Stamped-date of closed (DO NOT USE)':'Stamped_date',
'Quote Amount':'Quote_Amount', 'Lead Source':'Source','Desired activation date':'Activ_date'},
inplace=True)
df.Close_date = pd.to_datetime(df.Close_date, format='%Y-%m-%d')
cols_num = ['Quote_Amount','DISCOUNT']
df[cols_num] = df[cols_num].apply(pd.to_numeric)
df_closed = df[df['Stage']=='Closed']
df_closed.fillna("Unknown", inplace=True)
start_point = min(df['Quote_Amount'])
end_point = max(df['Quote_Amount'])
TOOLS = 'pan,wheel_zoom,box_zoom,reset,tap,save,box_select,lasso_select'
source = ColumnDataSource(df_closed)
hover = HoverTool(
tooltips=[
("Quote", "$x"),
("Discount", "$y")
]
)
p = figure(title='Quotes per Source - Closed deals',tools=[hover,TOOLS],
plot_height=800, plot_width=800)
p.circle('Quote_Amount','DISCOUNT',source=source, size = 8, color = 'CornflowerBlue', alpha = 0.6)
N = 20000
slider = Slider(start=start_point, end=end_point, step=10, value=N,
title='Select Quote Amount Cutoff')
dfList = df_closed.Source.unique().tolist()
All_view = ['All']
source_options = All_view + dfList
menu = Select(title = "Select Lead Source",options=source_options, value = 'All')
first_date = min(df['Close_date'])
last_date = max(df['Close_date'])
date_range_slider = DateRangeSlider(title="Select Date Range ", start=first_date, end=date.today(), value=(date(2017, 9, 7), date(2017, 10, 15)), step=1)
def slider_callback(attr, old, new):
N = new # this works also with slider.value but new is more explicit
new1 = ColumnDataSource(df_closed.loc[(df_closed.Quote_Amount < N)])
source.data = new1.data
slider.on_change('value',slider_callback)
def menu_callback(attr, old, new):
if menu.value == 'All': new2 = ColumnDataSource(df_closed)
else: new2 = ColumnDataSource(df_closed.loc[(df_closed.Source == menu.value)])
source.data = new2.data
menu.on_change('value',menu_callback)
def date_callback(attr, old, new):
start = date_range_slider.value_as_datetime[0].strftime("%Y-%m-%d")
end = date_range_slider.value_as_datetime[1].strftime("%Y-%m-%d")
df_closed_new = df_closed[df_closed['Close_date'] >= start]
df_closed_new = df_closed[df_closed['Close_date'] <= end]
new3 = ColumnDataSource(df_closed_new)
source.data = new3.data
date_range_slider.on_change('value',date_callback)
# Put controls in a single element
controls = widgetbox(menu, slider, date_range_slider)
# Create a row layout
layout = row(controls, p)
curdoc().add_root(layout)
You question is not very clear to me. Are you talking about the previous state of widgets? The callbacks have access to the current state of all the other widgets so if you want to maintain a history of their previous states you'll have to explicitly keep track of that.
However I immediately notice on thing that should not be done, so I am going to post an answer just to draw attention to it. Don't create new CDS objects just to use their .data attribute and throw them away:
new1 = ColumnDataSource(df_closed.loc[(df_closed.Quote_Amount < N)])
source.data = new1.data
There is alot of machinery under the covers that affords all the automatic synchronization other features of Bokeh. CDS in particular are extremely heavyweight, complicated objects, and doing this above is a known anti-pattern that can break things. Instead, if you just need a new suitable .data dict, then use from_df:
new_data = ColumnDataSource.from_df(df_closed.loc[(df_closed.Quote_Amount < N)])
source.data = new_data

Resources