For one of my classes, I made a 3D graphing application (using Visual Basic). It takes in a string (z=f(x,y)) as input, parses it into RPN notation, then evaluates and graphs the equation. While it did work, it took about 20 seconds to graph. I would have liked to add slide bars to rotate the graph vertically and horizontally, but it was definitely too slow to allow that.
Does anyone know what programming languages would be best for this type of thing? Ideally, I will be able to smoothly rotate the function once it is graphed.
Also, I’m trying to find a better way to rotate the function. Right now, I evaluate it at a bunch of points, and then plot the points to the screen. Every time it is rotated, it must be re-evaluated and plot all the new points. This takes just as long as the original graph process, as it basically treats it as a completely new function.
Lastly, I need a better way to display the graph. Currently (using VB with visual studio) I plot 200,000 points to a chart, but this does not look great by any means. Eventually, I would like to be able to change color based on height, and other graphics manipulation to make it look better.
To be clear, I am not asking for someone to do any of this for me, but rather the means to go about coding this in an efficient way. I will greatly appreciate any advice anyone can give to help with any of these three concerns.
So I will explain how I would go about it using C++ and OpenGL. This doesn't mean those are the tools that you must use, it's just those are standard graphics tools.
Your function's surface is essentially a 2D manifold, which has the nice property of having an intuitive mapping to a 2D space. What is commonly referred to as UV mapping.
What you should do is pick the ranges for the rectangle domain you want to display (minimum x, maximum x, minimum y, maximum y) And make 2 nested for loops of the form:
// Pseudocode
for (x=minimum; x<maximum; x++)
for (y=minimum; y=maximum; y++)
3D point = (x,y, f(x,y))
Store all of these points into a container (std vector for c++ works fine) and this will be your "mesh".
This is done once, prior to rendering. You then render those points using, for example GL_POINTS, and rotate your graph mesh using rotations on the GPU.
This will only show scattered points, not a surface.
If you also wish to show the surface of your function, and not just the points, you can triangulate that set of points fairly easily.
Group each 4 contiguous vertices (i.e the vertices at indices <x,y>, <x+1,y>, <x+1,y>, <x+1,y+1>) and create the 2 triangles:
(<x,y>, <x+1,y>, <x,y+1>), (<x+1,y>, <x+1,y+1>, <x,y+1>)
This will fill triangulate the surface of your mesh.
Essentially you only need to build your mesh once, and this way rendering should be 60 fps for something with 20 000 vertices, regardless of whether you only render points or triangles too.
Programming language is mostly not relevant, so VB itself is probably not the issue. You can have the same issues in Python, C#, C++, etc. Of course you must master the programming language you choose.
One key aspect is using the right algorithms and data-structures. Proper use of memory allocations and memory layout for maximizing CPU (and GPU) cache are also key. Then you must take advantage of the platform and hardware capabilities (GPU and Multithreading). For the last point you definetely need to use a graphics library such as OpenGL or Vulkan.
Related
Say I had a point cloud with n number of points in 3d space(relatively densely packed together). What is the most efficient way to create a surface that goes contains every single point in it and lets me calculate values such as the normal and curvature at some point on the surface that was created? I also need to be able to create this surface as fast as possible(a few milliseconds hopefully working with python) and it can be assumed that n < 1000.
There is no "most efficient and effective" way (this is true of any problem in any domain).
In the first place, the surface you have in mind is not mathematically defined uniquely.
A possible approach is by means of the so-called Alpha-shapes, implemented either from a Delaunay tetrahedrization, or by the ball-pivoting method. For other methods, lookup "mesh reconstruction" or "surface reconstruction".
On another hand, normals and curvature can be computed locally, from neighbors configurations, without reconstructing a surface (though there is an ambiguity on the orientation of the normals).
I could suggest Nina Amenta's Power Crust algorithm (link to code), or also meshlab suite, which can compute the curvatures too.
Plotting packages offer a variety of methods for displaying data. Write an interactive plotting application for two dimensionsional curves. Your application should be able to allow the user to choose the mode (line strip or polyline display of the data, bar chart or pie charts), colours, and line styles.
You should start with the GUI editation like this:
Does anyone know of a low level (no frameworks) example of a drag & drop, re-order-able list?
and change it to your primitives (more points per primitive instead of one ... handle each point as (sub)object so you can change its position later).
Then just add tools like add object,del object,... For hand drawing tool use piece wise interpolation cubics
The grid can be done like this:
How to draw dynamic 2D grid that adjusts according to camera zoom: OpenGL
Mouse zooming/panning is also important
Zooming graphics based on current mouse position
Putting all above together into simple editor looks like this:
Using GPU for curve rendering might give you some nice speed and functionality boost:
Is it possible to express "t" variable from Cubic Bezier Curve equation?
Mouse selection of objects might be a speed problem if your scene contains too many objects so in such case its best to use index buffers where you can mouse select with pixel perfect precision for almost free in O(1):
OpenGL 3D-raypicking with high poly meshes
The example is for 3D , in 2D is much simpler ...
Also do not forget to implement save/load functionality to some vector file format. I recommend using SVG it might be complicated to start with it but you can quickly check it contents in any SVG viewer or browser also in notepad as its just a text file. If you use just basic path elements and ignore the rest of SVG features you will see the parsing and creating SVG is not that hard for example See these:
Get Vertices/Edges From BMP or SVG (C#)
Discrete probability distribution plot with given values
For really big datasets you might want to use spatial subdivision techniques (Bounding (Volume)Area Hierarchy, or Quad tree) to ease up the operations...
More in depth implementation details about 2D vector gfx editors depends on language, OS, gfx api and GUI api you using and task you are aiming for ...
I am sketching out a new simulation that will involve thousands of ships moving around on Earth's oceans and interacting over long periods of time. So, lots of "intersection detection" for sensor and communications ranges, as well as region detection for various environmental conditions. We'll assume a spherical earth, not WGS84. This is an event-step simulation that spits out metrics, not a real time game or anything like that.
A question is to use Cartesian coordinates (Earth-Centered, Earth-Fixed) or Geodic/polar coordinates. With polar coordinates a ship's track would be internally represented as a series of lat/lon waypoints with times and a great circle paths between them. With a Cartesian representation the waypoints would be connected with polyline renderings of the great circle between them.
The reason this is a question is I suspect that by sticking to a Cartesian data model it becomes possible to use various geometry libraries that are performance tuned, and even offer up SIMD/GPU performance advantages. The polar coordinates would probably be the more natural way to proceed if writing everything from scratch. But I suspect that by keeping things Cartesian I will have greater access to better and faster libraries. Is this an invalid line of thought? Another consideration is that I know polar coordinate calculations tend to get really screwy when near the poles.
Just curious if somebody with experience could save me a whole lot of time prototyping some scenarios both ways.
It often works well to represent directions as unit vectors instead of angles. Rotation of a vector by another angle becomes a 2x2 or 3x3 matmul (efficient with SIMD, but still more expensive than an FP add of two numbers in radians), but you very rarely need sin/cos.
You may occasionally want atan2 to get an angle, but usually not inside tight loops.
Intersection-detection can be very efficient (with SIMD) for XYZ coordinates given another XYZ + range. I'm not sure how efficiently you could check which lat/lon pairs were within range of a given point, not a problem I've looked at.
IDK what kind of stuff you'd find in existing libraries, or what you'd want to do with it.
I am looking for an algorithm that given two meshes could clip one using another.
The simplest form of this is clipping a mesh using a plane. I've already implemented that by following something similar to what is described here.
What it does is basically inspecting all mesh vertices and triangles with respect to the plane (the plane's normal and point are given). If the triangle is completely above the plane, it is left untouched. If it falls completely below the plane, it is discarded. If some of the edges of the triangle intersect with the plane, the intersecting points with the plane are calculated and added as the new vertices. Finally a cap is generated for the hole on the place the mesh was cut.
The problem is that the algorithm assumes that the plane is unlimited, therefore whatever is in its path is clipped. In the simplest form, I need an extension of this without the assumption of a plane of "infinite" size.
To clarify, imagine that we have a 3D model of a desk with 2 boxes on it. The boxes are adjacent (but not touching or stacked). The user will define a cutting plane of a limited width and height underneath the first box and performs the cut. We end up with a desk model (mesh) with a box on it and another box (mesh) that can be freely moved around/manipulated.
In the general form, I'd like the user to be able to define a bounding box for the box he/she wants to separate from the desk model and perform the cut using that bounding box.
If I could extend the algorithm I already have to an algorithm with limited-sized planes, that would be great for now.
What you're looking for are constructive solid geometry/boolean algorithms with arbitrary meshes. It's considerably more complex than slicing meshes by an infinite plane.
Among the earliest and simplest research in this area, and a good starting point, is Constructive Solid Geometry for Polyhedral Objects by Trumbore and Hughes.
http://cs.brown.edu/~jfh/papers/Laidlaw-CSG-1986/main.htm
From the original paper:
More elaborate solutions extend upon this subject with a variety of data structures.
The real complexity of the operation lies in the slicing algorithm to slice one triangle against another. The nightmare of implementing robust CSG lies in numerical precision. It's easy when you involve objects far more complex than a cube to run into cases where a slice is made just barely next to a vertex (at which point you have the tough decision of merging the new split vertex or not prior to carrying out more splits), where polygons are coplanar (or almost), etc.
So I suggest initially erring on the side of using very high-precision floating point numbers, possibly even higher than double precision to focus on getting something working correctly and robustly. You can optimize later (first pass should be to use an accelerator like an octree/kd-tree/bvh), but you'll avoid many headaches this way in your first iteration.
This is vastly simpler to implement at render time if you're focusing on a raytracer rather than a modeling software, e.g. With raytracers, all you have to do to do this kind of arbitrary clipping is pretend that an object used to subtract from another has its polygons flipped in the culling process, e.g. It's easy to solve robustly at the ray level, but quite a bit harder to do robustly at the geometric level.
Another thing you can do to make your life so much easier if you can afford it is to voxelize your object, find subtractions/additions/unions of voxels, and then translate the voxels back into a mesh. This is so much easier to make robust, but harder to do efficiently and the voxel->polygon conversion can get quite involved if you want better results than what marching cubes provide.
It's a really tough area to do extremely well and requires perseverance, and thus the reason for the existence of things like this: http://carve-csg.com/about.
If someone is interested, currently there is a solution for this problem in CGAL library. It allows clipping one triangular mesh using another mesh as bounding volume. The usage example can be found here.
I am using Java to write a very primitive 3D graphics engine based on The Black Art of 3D Game Programming from 1995. I have gotten to the point where I can draw single color polygons to the screen and move the camera around the "scene". I even have a Z buffer that handles translucent objects properly by sorting those pixels by Z, as long as I don't show too many translucent pixels at once. I am at the point where I want to add lighting. I want to keep it simple, and ambient light seems simple enough, directional light should be fairly simple too. But I really want point lighting with the ability to move the light source around and cast very primitive shadows ( mostly I don't want light shining through walls ).
My problem is that I don't know the best way to approach this. I imagine a point light source casting rays at regular angles, and if these rays intersect a polygon it will light that polygon and stop moving forward. However when I think about a scene with multiple light sources and multiple polygons with all those rays I imagine it will get very slow. I also don't know how to handle a case where a polygon is far enough away from a light source that if falls in between two rays. I would give each light source a maximum distance, and if I gave it enough rays, then there should be no point within that distance that any two rays are too far apart to miss a polygon, but that only increases my problem with the number of calculations to perform.
My question to you is: Is there some trick to point light sources to speed them up or just to organize it better? I'm afraid I'll just get a nightmare of nested for loops. I can't use openGL or Direct3D or any other cheats because I want to write my own.
If you want to see my results so far, here is a youtube video. I have already fixed the bad camera rotation. http://www.youtube.com/watch?v=_XYj113Le58&feature=plcp
Lighting for real time 3d applications is (or rather - has in the past generally been) done by very simple approximations - see http://en.wikipedia.org/wiki/Shading. Shadows are expensive - and have generally in rasterizing 3d engines been accomplished via shadow maps & Shadow Volumes. Point lights make shadows even more expensive.
Dynamic real time light sources have only recently become a common feature in games - simply because they place such a heavy burden on the rendering system. And these games leverage dedicated graphics cards. So I think you may struggle to get good performance out of your engine if you decide to include dynamic - shadow casting - point lights.
Today it is commonplace for lighting to be applied in two ways:
Traditionally this has been "forward rendering". In this method, for every vertex (if you are doing the lighting per vertex) or fragment (if you are doing it per-pixel) you would calculate the contribution of each light source.
More recently, "deferred" lighting has become popular, wherein the geometry and extra data like normals & colour info are all rendered to intermediate buffers - which is then used to calculate lighting contributions. This way, the lighting calculations are not dependent on the geometry count. It does however, have a lot of other overhead.
There are a lot of options. Implementing anything much more complex than some the basic models that have been used by dedicated graphics cards over the past couple of years is going to be challenging, however!
My suggestion would be to start out with something simple - basic lighting without shadows. From there you can extend and optimize.
What are you doing the ray-triangle intersection test for? Are you trying to light only triangles which the light would reach? Ray-triangle
intersections for every light with every poly is going to be very expensive I think. For lighting without shadows, typically you would
just iterate through every face (or if you are doing it per vertex, through every vertex) and calculate & add the lighting contribution per light - you would do this just before you start rasterizing as you have to pass through all polys in anycase.
You can calculate the lighting by making use of any illumination model, something very simple like Lambertian reflectance - which shades the surface based upon the dot product of the normal of the surface and the direction vector from the surface to the light. Make sure your vectors are in the same spaces! This is possibly why you are getting the strange results that you are. If your surface normal is in world space, be sure to calculate the world space light vector. There are a bunch of advantages for calulating lighting in certain spaces, you can have a look at that later on, for now I suggest you just get the basics up and running. Also have a look at Blinn-phong - this is the shading model graphics cards used for many years.
For lighting with shadows - look into the links I posted. They were developed because realistic lighting is so expensive to calculate.
By the way, LaMothe had a follow up book called Tricks of the 3D Game Programming Gurus-Advanced 3D Graphics and Rasterization.
This takes you through every step of programming a 3d engine. I am not sure what the black art book covers.