n-dimensional space: Does a line intersect a simplex or not? - geometry

in an n-dimensional space a line (defined by 2 points) and a simplex (defined by n+1 points) are given. I'm looking for a boolean criterion to check wether the line intersects the simplex or not.
Thank you very much for your help and kind regards,
Goetz

Related

Line intesection in 3D with uncertainties

I have to compute the intersection of two lines in 3D space.
This qestion itself has already been adressed.
The reason why I am posting is that the lines both come with some uncertainties
in their direction.
This is represented on the figure below. Each line comes with its own coordinate axes. Uncertainty is represented by a matrix covariance, this one is generally diagonal with the azimut and elevation variance as elements. The uncertainty is geometrically represented by a conic with the line as center axe and delimited by the standard deviation (square of variance).
So, ideally, what I would like to compute is the intersection volume between these conics. Whether these ones really intersects depend on the implicit probability distributions. If you assume them to be gaussian, the intersection will always exist except that if line directions are very distant, it will have a very poor probability.
This is what I would like to assess numerically : get the volume intersection and its probability.
I assume the probability distributions of both lines to be independent.
For the moment, what I figured out is to compute the distance between both lines.
If this one is zero, they really intersect. This distance is a segment perpendicular to both lines. My guess is that the middle point of this segment will represent the point with best probability for lines to intersect.
Then, I would assume the probability distribution around that point to be gaussian and compute its covariance matrix numerically.
Do you agree with this method ? or think there would be a better way ?
Regards

How to find if a line intersects a voxel from a set of voxels?

I have an input as set of voxels with their centre's (x,y,z) given. I have a set of lines. I want to find if a line is intersected by any voxel in the given voxel set. (Yes/No Question). The current algorithm I am using is to traverse through the complete voxel set until I found intersection with any voxel. This takes much time. Is it any way to do it faster?
I am finding intersection of a voxel with the line by calculating the distance of the centre of the voxel from the line and checking whether it is less than some small quantity.
If voxel is axis-aligned box, then you can use any line-clipping algorithm to check for intersection.
I'd recommend Liang-Barsky one (checks for intersection with 6 planes)

How to test if a line intersects a convex polygon?

Assume you are given the equation of a line (in 2d), and the equations of lines that form a convex polygon (the polygon could be unbounded). How do I determine if the line intersects the polygon?
Furthermore, are there computational geometry libraries where such tasks are pre-defined? I ask because I'm interested not just in the 2D version but n-dimensional geometry.
For the 2D case, I think the problem simplifies a bit.
The line partitions the space into two regions.
If the polygon is present in only one of those regions, then the line does not intersect it.
If the polygon is present in both regions, then the line does intersect it.
So:
Take any perpendicular to the line, making the intersection with the
line the origin.
Project each vertex of the polytope onto the perpendicular.
If those projections occur with both signs, then the polygon
intersects the line.
[Update following elexhobby's comment.]
Forgot to include the handling of the unbounded case.
I meant to add that one could create a "virtual vertex" to represent the open area. What we really need is the "direction" of the open area. We can take this as the mean of the vectors for the bounding edges of the open area.
We then treat the dot product of that direction with the normal and add that to the set of vertex projections.
In geometry, typically see wikipedia a polygon is bounded.
What you are describing is usually called a polytope or a polyhedron see wikipedia
There are a few geometry libraries available, two that come to mind are boost (polygon) and CGAL. Generally, there is a distinct split between computational methods that deal with 2d,3d, and N-d - for obvious reasons.
For your problem, I would use a somewhat Binary Space Partitioning Tree approach. I would take the first line of your "poly" and trim the query line against it, creating a ray. The ray would start at the intersection of the two lines, and proceed in direction of the interior of the half-space generated by the first line of the "poly". Now I would repeat the procedure with the ray and the second line of the "poly". (this could generate a segment instead of ray) If at some point the ray (or now segment) origin lies on the outer side of a poly line currently considered and does not intersect it, then the answer is no - the line does not intersect your "poly". Otherwise it intersects. Take special care with various parallel edge cases. Fairly straight forward and works for multi-dimensional cases.
I am not fully sure, but I guess you can address this by use of duality. First normalize your line equations as a.x+b.y=1, and consider the set of points (a,b).
These must form a convex polygon, and my guess is that the new line may not correspond to a point inside the polygon. This is readily checked by verifying that the new point is on the same side of all the edges. (If you don't know the order of the lines, first construct the convex hull.)
Let's start from finite polygons.
To intersect polygon a line must intersect one of its edges. Intersection between line and an edge is possible only if two points lie on different sides from the line.
That can be easily checked with sign(cross_product(Ep-Lp,Ld)) for two points of the edge. Ep - edge point, Lp - some point on the line, Ld - direction vector of the line, cross_product(A,B)=Ax*By-Ay*Bx.
To deal with infinite polygons we may introduce "infinite points". If we have a half infinite edge with point E1 and direction Ed, its "second point" is something like E1+infinity*Ed, where infinity is "big enough number".
For "infinite points" the check will be slightly different:
cross_product(Ep-Lp,Ld)=
=cross_product(E1+infinity*Ed-Lp,Ld)=
=cross_product(E1-Lp+infinity*Ed,Ld)=
=cross_product(E1-Lp,Ld)+cross_product(infinity*Ed,Ld)=
=cross_product(E1-Lp,Ld)+infinity*cross_product(Ed,Ld)
If cross_product(Ed,Ld) is zero (the line is parallel to the edge), the sign will be determined by the first component. Otherwise the second component will dominate and determine the sign.

Calculating margin and bias for SVM's

I apologise for the newbishness of this question in advance but I am stuck. I am trying to solve this question,
I can do parts i)-1v) but I am stuck on v. I know to calculate the margin y, you do
y=2/||W||
and I know that W is the normal to the hyperplane, I just don't know how to calculate it. Is this always
W=[1;1] ?
Similarly, the bias, W^T * x + b = 0
how do I find the value x from the data points? Thank you for your help.
Consider building an SVM over the (very little) data set shown in Picture for an example like this, the maximum margin weight vector will be parallel to the shortest line connecting points of the two classes, that is, the line between and , giving a weight vector of . The optimal decision surface is orthogonal to that line and intersects it at the halfway point. Therefore, it passes through . So, the SVM decision boundary is:
Working algebraically, with the standard constraint that , we seek to minimize . This happens when this constraint is satisfied with equality by the two support vectors. Further we know that the solution is for some . So we have that:
Therefore a=2/5 and b=-11/5, and . So the optimal hyperplane is given by
and b= -11/5 .
The margin boundary is
This answer can be confirmed geometrically by examining picture.

How do I determine if two convex polygons intersect?

Suppose there are a number of convex polygons on a plane, perhaps a map. These polygons can bump up against each other and share an edge, but cannot overlap.
To test if two polygons P and Q overlap, first I can test each edge in P to see if it intersects with any of the edges in Q. If an intersection is found, I declare that P and Q intersect. If none intersect, I then have to test for the case that P is completely contained by Q, and vice versa. Next, there's the case that P==Q. Finally, there's the case that share a few edges, but not all of them. (These last two cases can probably be thought of as the same general case, but that might not be important.)
I have an algorithm that detects where two line segments intersect. If the two segments are co-linear, they are not considered to intersect for my purposes.
Have I properly enumerated the cases? Any suggestions for testing for these cases?
Note that I'm not looking to find the new convex polygon that is the intersection, I just want to know if an intersection exists. There are many well documented algorithms for finding the intersection, but I don't need to go through all the effort.
You could use this collision algorithm:
To be able to decide whether two convex polygons are intersecting (touching each other) we can use the Separating Axis Theorem. Essentially:
If two convex polygons are not intersecting, there exists a line that passes between them.
Such a line only exists if one of the sides of one of the polygons forms such a line.
The first statement is easy. Since the polygons are both convex, you'll be able to draw a line with one polygon on one side and the other polygon on the other side unless they are intersecting. The second is slightly less intuitive. Look at figure 1. Unless the closest sided of the polygons are parallel to each other, the point where they get closest to each other is the point where a corner of one polygon gets closest to a side of the other polygon. This side will then form a separating axis between the polygons. If the sides are parallel, they both are separating axes.
So how does this concretely help us decide whether polygon A and B intersect? Well, we just go over each side of each polygon and check whether it forms a separating axis. To do this we'll be using some basic vector math to squash all the points of both polygons onto a line that is perpendicular to the potential separating line (see figure 2). Now the whole problem is conveniently 1-dimensional. We can determine a region in which the points for each polygon lie, and this line is a separating axis if these regions do not overlap.
If, after checking each line from both polygons, no separating axis was found, it has been proven that the polygons intersect and something has to be done about it.
There are several ways to detect intersection and / or containment between convex polygons. It all depends on how efficient you want the algorithm to be. Consider two convex polygons R and B with r and b vertices, respectively:
Sweep line based algorithm. As you mentioned you can perform a sweep line procedure and keep the intervals resulting from the intersection of the polygons with the sweeping line. If at any time the intervals overlap, then the polygons intersect. The complexity is O((r + b) log (r + b)) time.
Rotating Callipers based algorithm. See here and here for more details. The complexity is O(r + b) time.
The most efficient methods can be found here and here. These algorithms take O(log r + log b) time.
if the polygons are always convex, first calculate the angle of a line drawn from center to center of the polygons. you can then eliminate needing to test edge segments in the half of the polygon(s) 180 degrees away from the other polygon(s).
to eliminate the edges, Start with the polygon on the left. take the line segment from the center of the polygon that is perpendicular to the line segment from the previous bullet, and touches both sides of the polygon. call this line segment p, with vertexes p1 and p2. Then, for all vertexes if the x coordinate is less than p1.x and p2.x That vertex can go in the "safe bucket".
if it doesn't, you have to check to make sure it is on the "safe" side of the line (just check the y coordinates too)
-if a line segment in the polygon has all vertexes in the "safe bucket" you can ignore it.
-reverse the polarity so you are "right oriented" for the second polygon.
GJK collision detection should work.
Since altCognito already gave you a solution, I'll only point out an excellent book on computational geometry that might interest you.
Your test cases should work, since you're checking the case where the polygons don't intersect at all (completely outside or completely inside), as well as where there is any form of partial intersection (edges intersect always if there is overlap).
For testing, I would just make sure to test every potential combination. The one missing above from what I see is a single edge shared, but one poly contained in the other. I would also add tests for some more complex poly shapes, from tri -> many sided, just as a precaution.
Also, if you had a U shaped poly that completely surrounded the poly, but didn't overlap, I believe your case would handle that, but I would add that as a check, as well.
Here's an idea:
Find the center point of each polygon
Find the two points of each polygon closest to the center point of the other. They will be adjacent points in convex polygons. These define the nearest edge of each polygon, let's call the points {A, B} and {Y, Z}
Find the intersection of lines AB and YZ. If the line segments cross (the intersection on AB lies between A and B), your polygons intersect. If AB and XY are parallel ignore this condition, the next step will trap the problem.
There is one more case you need to check for, which is when the polygons intersect heavily enough that AB and XY are completely past each other and don't actually intersect.
To trap this case, calculate the perpendicular distances of AB and XY to each polygons center points. If either center point is closer to the opposite polygon's line segment your polygon overlap heavily.

Resources