How would you alter the example from Rocket's website to take a date rather than an age/u8?
The example from the website:
#![feature(proc_macro_hygiene, decl_macro)]
#[macro_use] extern crate rocket;
#[get("/hello/<name>/<age>")]
fn hello(name: String, age: u8) -> String {
format!("Hello, {} year old named {}!", age, name)
}
fn main() {
rocket::ignite().mount("/", routes![hello]).launch();
}
I'd like to have more or less the same output (Hello, 58 year old named John!) but have something like this
#[get("/hello/<name>/<birthdate>")]
instead of that
#[get("/hello/<name>/<age>")]
I think the right struct is chrono::DateTime and that somehow rocket::request::FromParam is involved but I'm a bit lost from there.
Kinda sucks that we have to do this ourselves.
Maybe in the future, there will be a library provided which gives us interop between Rocket and other libraries.
use chrono::NaiveDate;
use chrono::NaiveTime;
use chrono::NaiveDateTime;
// https://stackoverflow.com/questions/25413201/how-do-i-implement-a-trait-i-dont-own-for-a-type-i-dont-own
// https://github.com/SergioBenitez/Rocket/issues/602#issuecomment-380497269
pub struct NaiveDateForm(NaiveDate);
pub struct NaiveTimeForm(NaiveTime);
pub struct NaiveDateTimeForm(NaiveDateTime);
impl<'v> FromFormValue<'v> for NaiveDateForm {
type Error = &'v RawStr;
fn from_form_value(form_value: &'v RawStr) -> Result<NaiveDateForm, &'v RawStr> {
let decoded = form_value.url_decode().map_err(|_| form_value)?;
if let Ok(date) = NaiveDate::parse_from_str(&decoded, "%Y-%m-%d") {
return Ok(NaiveDateForm(date));
}
Err(form_value)
}
}
impl<'v> FromFormValue<'v> for NaiveTimeForm {
type Error = &'v RawStr;
fn from_form_value(form_value: &'v RawStr) -> Result<Self, Self::Error> {
let decoded = form_value.url_decode().map_err(|_| form_value)?;
if let Ok(time) = NaiveTime::parse_from_str(&decoded, "%H:%M:%S%.3f") {
// if time.nanosecond() >= 1_000_000_000 {
// return Err(form_value);
// }
return Ok(NaiveTimeForm(time));
}
if let Ok(time) = NaiveTime::parse_from_str(&decoded, "%H:%M") {
return Ok(NaiveTimeForm(time));
}
Err(form_value)
}
}
impl<'v> FromFormValue<'v> for NaiveDateTimeForm {
type Error = &'v RawStr;
fn from_form_value(form_value: &'v RawStr) -> Result<NaiveDateTimeForm, &'v RawStr> {
let decoded = form_value.url_decode().map_err(|_| form_value)?;
if decoded.len() < "0000-00-00T00:00".len() {
return Err(form_value)
}
let date = NaiveDateForm::from_form_value(RawStr::from_str(&decoded[.."0000-00-00".len()]))
.map_err(|_| form_value)?;
let time = NaiveTimeForm::from_form_value(RawStr::from_str(&decoded["0000-00-00T".len()..]))
.map_err(|_| form_value)?;
Ok(NaiveDateTimeForm(NaiveDateTime::new(*date, *time)))
}
}
impl Deref for NaiveDateForm {
type Target = NaiveDate;
fn deref(&self) -> &NaiveDate {
&self.0
}
}
impl Deref for NaiveTimeForm {
type Target = NaiveTime;
fn deref(&self) -> &NaiveTime {
&self.0
}
}
impl Deref for NaiveDateTimeForm {
type Target = NaiveDateTime;
fn deref(&self) -> &NaiveDateTime {
&self.0
}
}
You should then be able to do:
#[get("/hello/<name>/<age>")]
fn hello(name: String, age: NaiveDateTimeForm) -> String {
// Deref back to chrono::NaiveDatetime
let date_time = *age;
// write some code to figure out their age
}
My dependencies:
chrono = { version = "0.4.19", features = ["serde"] }
rocket = "0.4.2"
This implementation is mostly stolen from https://github.com/chronotope/chrono/pull/362/files where someone made a PR to try to get this stuff already into Chrono.
Probably rather than age, you should have birthday so you can calculate their age.
NaiveDate can be represented as "number of days since January 1, 1" with type i32. There are methods self.num_days_from_ce() and from_num_days_from_ce(). I believe this is the most convenient way. Documentation
i follow harvzor's code with a work version for rocket 0.5.
use chrono::NaiveDate;
use chrono::ParseError;
use rocket::request::FromParam;
// https://stackoverflow.com/questions/25413201/how-do-i-implement-a- trait-i-dont-own-for-a-type-i-dont-own
// https://github.com/SergioBenitez/Rocket/issues/602#issuecomment-380497269
pub struct NaiveDateForm(pub NaiveDate);
impl<'a> FromParam<'a> for NaiveDateForm {
type Error = ParseError;
fn from_param(param: &'a str) -> Result<Self, Self::Error>{
match NaiveDate::parse_from_str(¶m, "%Y-%m-%d") {
Ok(date)=> Ok(NaiveDateForm(date)),
Err(e) =>Err(e),
}
}
}
Related
I am implementing a derive macro to reduce the amount of boilerplate I have to write for similar types.
I want the macro to operate on structs which have the following format:
#[derive(MyTrait)]
struct SomeStruct {
records: HashMap<Id, Record>
}
Calling the macro should generate an implementation like so:
impl MyTrait for SomeStruct {
fn foo(&self, id: Id) -> Record { ... }
}
So I understand how to generate the code using quote:
#[proc_macro_derive(MyTrait)]
pub fn derive_answer_fn(item: TokenStream) -> TokenStream {
...
let generated = quote!{
impl MyTrait for #struct_name {
fn foo(&self, id: #id_type) -> #record_type { ... }
}
}
...
}
But what is the best way to get #struct_name, #id_type and #record_type from the input token stream?
One way is to use the venial crate to parse the TokenStream.
use proc_macro2;
use quote::quote;
use venial;
#[proc_macro_derive(MyTrait)]
pub fn derive_answer_fn(item: proc_macro::TokenStream) -> proc_macro::TokenStream {
// Ensure it's deriving for a struct.
let s = match venial::parse_declaration(proc_macro2::TokenStream::from(item)) {
Ok(venial::Declaration::Struct(s)) => s,
Ok(_) => panic!("Can only derive this trait on a struct"),
Err(_) => panic!("Error parsing into valid Rust"),
};
let struct_name = s.name;
// Get the struct's first field.
let fields = s.fields;
let named_fields = match fields {
venial::StructFields::Named(named_fields) => named_fields,
_ => panic!("Expected a named field"),
};
let inners: Vec<(venial::NamedField, proc_macro2::Punct)> = named_fields.fields.inner;
if inners.len() != 1 {
panic!("Expected exactly one named field");
}
// Get the name and type of the first field.
let first_field_name = &inners[0].0.name;
let first_field_type = &inners[0].0.ty;
// Extract Id and Record from the type HashMap<Id, Record>
if first_field_type.tokens.len() != 6 {
panic!("Expected type T<R, S> for first named field");
}
let id = first_field_type.tokens[2].clone();
let record = first_field_type.tokens[4].clone();
// Implement MyTrait.
let generated = quote! {
impl MyTrait for #struct_name {
fn foo(&self, id: #id) -> #record { *self.#first_field_name.get(&id).unwrap() }
}
};
proc_macro::TokenStream::from(generated)
}
I know the issue is that I have two Result types from different libraries but can't find how to fix it.
[dependencies]
crossterm = "0.23"
time = "0.3.9"
tokio = { version = "1", features = ["full"] }
reqwest = { version = "0.11", features = ["blocking", "json"] }
use time::Instant;
use std::collections::HashMap;
use crossterm::{
event::{self, Event, KeyCode, KeyEvent},
Result,
};
pub fn read_char() -> Result<char> {
loop {
if let Event::Key(KeyEvent {
code: KeyCode::Char(c),
..
}) = event::read()?
{
return Ok(c);
}
}
}
fn main() -> Result<(), Box<dyn std::error::Error>> {
let instant = Instant::now();
let response = reqwest::blocking::get("https://httpbin.org/ip")?
.json::<HashMap<String, String>>()?;
let duration = instant.elapsed();
println!("ns = {:?}, response: {:#?}, ", duration.whole_nanoseconds(), response);
// Any key to continue
println!("Press any key to continue:");
println!("{:?}", read_char());
Ok(())
}
Gives the error:
error[E0107]: this type alias takes 1 generic argument but 2 generic arguments were supplied
--> src\main.rs:20:14
|
20 | fn main() -> Result<(), Box<dyn std::error::Error>> {
| ^^^^^^ -------------------------- help: remove this generic argument
| |
| expected 1 generic argument
How do I fix this? I have searched but am likely looking for incorrect terms e.g. namespace alias and core::Result error[E0107] is not really helping.
I have tried this without success:
fn main() -> core::Result<(), Box<dyn std::error::Error>> {
You have crossterm ::Result in scope, so you would have to disambiguate the result you want to return, otherwise it just thinks you want to return the crossterm type:
fn main() -> std::result::Result<(), Box<dyn std::error::Error>> {
...
Ok(())
}
I've been trying to implement a Strategy pattern in rust, but I'm having trouble understanding how to make it work.
So let's imagine we have a trait Adder and Element:
pub trait Element {
fn to_string(&self) -> String;
}
pub trait Adder {
type E: Element;
fn add (&self, a: &Self::E, b: &Self::E) -> Self::E;
}
And we have two implementations StringAdder with StringElements and UsizeAdder with UsizeElements:
// usize
pub struct UsizeElement {
pub value: usize
}
impl Element for UsizeElement {
fn to_string(&self) -> String {
self.value.to_string()
}
}
pub struct UsizeAdder {
}
impl Adder for UsizeAdder{
type E = UsizeElement;
fn add(&self, a: &UsizeElement, b: &UsizeElement) -> UsizeElement{
UsizeElement { value: a.value + b.value }
}
}
// String
pub struct StringElement {
pub value: String
}
impl Element for StringElement {
fn to_string(&self) -> String {
self.value.to_string()
}
}
pub struct StringAdder {
}
impl Adder for StringAdder {
type E = StringElement;
fn add(&self, a: &StringElement, b: &StringElement) -> StringElement {
let a: usize = a.value.parse().unwrap();
let b: usize = b.value.parse().unwrap();
StringElement {
value: (a + b).to_string()
}
}
}
And I want to write a code that uses trait methods from Adder trait and it's corresponding elements without knowing at compile time which strategy is going to be used.
fn main() {
let policy = "usize";
let element = "1";
let adder = get_adder(&policy);
let element_a = get_element(&policy, element);
let result = adder.add(element_a, element_a);
}
To simplify I'm going to assign a string to policy and element but normally that would be read from a file.
Is the only way to implement get_adder and get_element using dynamic dispatch? And by extension should I define Adder and Element traits to use trait objects and or the Any trait?
Edit: Here is what I managed to figure out so far.
An example of possible implementation is using match to help define concrete types for the compiler.
fn main() {
let policy = "string";
let element = "1";
let secret_key = "5";
let result = cesar(policy, element, secret_key);
dbg!(result.to_string());
}
fn cesar(policy: &str, element: &str, secret_key: &str) -> Box<dyn Element>{
match policy {
"usize" => {
let adder = UsizeAdder{};
let element = UsizeElement{ value: element.parse().unwrap() };
let secret_key = UsizeElement{ value: secret_key.parse().unwrap() };
Box::new(cesar_impl(&adder, &element, &secret_key))
}
"string" => {
let adder = StringAdder{};
let element = StringElement{ value: element.to_string() };
let secret_key = StringElement{ value: secret_key.to_string() };
Box::new(cesar_impl(&adder, &element, &secret_key))
}
_ => {
panic!("Policy not supported!")
}
}
}
fn cesar_impl<A>(adder: &A, element: &A::E, secret_key: &A::E) -> A::E where A: Adder, A::E : Element {
adder.add(&element, &secret_key)
}
However the issue is that I have to wrap every function I want to implement using a match function to determine the concrete type, and also case for every policy available.
It does not seem like the proper way of implementing it as it will bloat the code, make it more error prone and less maintainable unless I end up using macros.
Edit 2: Here you can find an example using dynamic dispatch. However I'm not convinced it's the proper way to implement the solution.
Example using dynamic dispatch
Thank you for your help :)
I'm trying to write a Rocket / Juniper / Rust based GraphQL Server using PickleDB - an in-memory key/value store.
The pickle db is created / loaded at the start and given to rocket to manage:
fn rocket() -> Rocket {
let pickle_path = var_os(String::from("PICKLE_PATH")).unwrap_or(OsString::from("pickle.db"));
let pickle_db_dump_policy = PickleDbDumpPolicy::PeriodicDump(Duration::from_secs(120));
let pickle_serialization_method = SerializationMethod::Bin;
let pickle_db: PickleDb = match Path::new(&pickle_path).exists() {
false => PickleDb::new(pickle_path, pickle_db_dump_policy, pickle_serialization_method),
true => PickleDb::load(pickle_path, pickle_db_dump_policy, pickle_serialization_method).unwrap(),
};
rocket::ignite()
.manage(Schema::new(Query, Mutation))
.manage(pickle_db)
.mount(
"/",
routes![graphiql, get_graphql_handler, post_graphql_handler],
)
}
And I want to retrieve the PickleDb instance from the Rocket State in my Guard:
pub struct Context {
pickle_db: PickleDb,
}
impl juniper::Context for Context {}
impl<'a, 'r> FromRequest<'a, 'r> for Context {
type Error = ();
fn from_request(_request: &'a Request<'r>) -> request::Outcome<Context, ()> {
let pickle_db = _request.guard::<State<PickleDb>>()?.inner();
Outcome::Success(Context { pickle_db })
}
}
This does not work because the State only gives me a reference:
26 | Outcome::Success(Context { pickle_db })
| ^^^^^^^^^ expected struct `pickledb::pickledb::PickleDb`, found `&pickledb::pickledb::PickleDb`
When I change my Context struct to contain a reference I get lifetime issues which I'm not yet familiar with:
15 | pickle_db: &PickleDb,
| ^ expected named lifetime parameter
I tried using 'static which does make rust quite unhappy and I tried to use the request lifetime (?) 'r of the FromRequest, but that does not really work either...
How do I get this to work? As I'm quite new in rust, is this the right way to do things?
I finally have a solution, although the need for unsafe indicates it is sub-optimal :)
#![allow(unsafe_code)]
use pickledb::{PickleDb, PickleDbDumpPolicy, SerializationMethod};
use serde::de::DeserializeOwned;
use serde::Serialize;
use std::env;
use std::path::Path;
use std::time::Duration;
pub static mut PICKLE_DB: Option<PickleDb> = None;
pub fn cache_init() {
let pickle_path = env::var(String::from("PICKLE_PATH")).unwrap_or(String::from("pickle.db"));
let pickle_db_dump_policy = PickleDbDumpPolicy::PeriodicDump(Duration::from_secs(120));
let pickle_serialization_method = SerializationMethod::Json;
let pickle_db = match Path::new(&pickle_path).exists() {
false => PickleDb::new(
pickle_path,
pickle_db_dump_policy,
pickle_serialization_method,
),
true => PickleDb::load(
pickle_path,
pickle_db_dump_policy,
pickle_serialization_method,
)
.unwrap(),
};
unsafe {
PICKLE_DB = Some(pickle_db);
}
}
pub fn cache_get<V>(key: &str) -> Option<V>
where
V: DeserializeOwned + std::fmt::Debug,
{
unsafe {
let pickle_db = PICKLE_DB
.as_ref()
.expect("cache uninitialized - call cache_init()");
pickle_db.get::<V>(key)
}
}
pub fn cache_set<V>(key: &str, value: &V) -> Result<(), pickledb::error::Error>
where
V: Serialize,
{
unsafe {
let pickle_db = PICKLE_DB
.as_mut()
.expect("cache uninitialized - call cache_init()");
pickle_db.set::<V>(key, value)?;
Ok(())
}
}
This can be simply imported and used as expected, but I think I'll run into issues when the load gets to high...
Say we want to have objects implementations switched at runtime, we'd do something like this:
pub trait Methods {
fn func(&self);
}
pub struct Methods_0;
impl Methods for Methods_0 {
fn func(&self) {
println!("foo");
}
}
pub struct Methods_1;
impl Methods for Methods_1 {
fn func(&self) {
println!("bar");
}
}
pub struct Object<'a> { //'
methods: &'a (Methods + 'a),
}
fn main() {
let methods: [&Methods; 2] = [&Methods_0, &Methods_1];
let mut obj = Object { methods: methods[0] };
obj.methods.func();
obj.methods = methods[1];
obj.methods.func();
}
Now, what if there are hundreds of such implementations? E.g. imagine implementations of cards for collectible card game where every card does something completely different and is hard to generalize; or imagine implementations for opcodes for a huge state machine. Sure you can argue that a different design pattern can be used -- but that's not the point of this question...
Wonder if there is any way for these Impl structs to somehow "register" themselves so they can be looked up later by a factory method? I would be happy to end up with a magical macro or even a plugin to accomplish that.
Say, in D you can use templates to register the implementations -- and if you can't for some reason, you can always inspect modules at compile-time and generate new code via mixins; there are also user-defined attributes that can help in this. In Python, you would normally use a metaclass so that every time a new child class is created, a ref to it is stored in the metaclass's registry which allows you to look up implementations by name or parameter; this can also be done via decorators if implementations are simple functions.
Ideally, in the example above you would be able to create Object as
Object::new(0)
where the value 0 is only known at runtime and it would magically return you an Object { methods: &Methods_0 }, and the body of new() would not have the implementations hard-coded like so "methods: [&Methods; 2] = [&Methods_0, &Methods_1]", instead it should be somehow inferred automatically.
So, this is probably extremely buggy, but it works as a proof of concept.
It is possible to use Cargo's code generation support to make the introspection at compile-time, by parsing (not exactly parsing in this case, but you get the idea) the present implementations, and generating the boilerplate necessary to make Object::new() work.
The code is pretty convoluted and has no error handling whatsoever, but works.
Tested on rustc 1.0.0-dev (2c0535421 2015-02-05 15:22:48 +0000)
(See on github)
src/main.rs:
pub mod implementations;
mod generated_glue {
include!(concat!(env!("OUT_DIR"), "/generated_glue.rs"));
}
use generated_glue::Object;
pub trait Methods {
fn func(&self);
}
pub struct Methods_2;
impl Methods for Methods_2 {
fn func(&self) {
println!("baz");
}
}
fn main() {
Object::new(2).func();
}
src/implementations.rs:
use super::Methods;
pub struct Methods_0;
impl Methods for Methods_0 {
fn func(&self) {
println!("foo");
}
}
pub struct Methods_1;
impl Methods for Methods_1 {
fn func(&self) {
println!("bar");
}
}
build.rs:
#![feature(core, unicode, path, io, env)]
use std::env;
use std::old_io::{fs, File, BufferedReader};
use std::collections::HashMap;
fn main() {
let target_dir = Path::new(env::var_string("OUT_DIR").unwrap());
let mut target_file = File::create(&target_dir.join("generated_glue.rs")).unwrap();
let source_code_path = Path::new(file!()).join_many(&["..", "src/"]);
let source_files = fs::readdir(&source_code_path).unwrap().into_iter()
.filter(|path| {
match path.str_components().last() {
Some(Some(filename)) => filename.split('.').last() == Some("rs"),
_ => false
}
});
let mut implementations = HashMap::new();
for source_file_path in source_files {
let relative_path = source_file_path.path_relative_from(&source_code_path).unwrap();
let source_file_name = relative_path.as_str().unwrap();
implementations.insert(source_file_name.to_string(), vec![]);
let mut file_implementations = &mut implementations[*source_file_name];
let mut source_file = BufferedReader::new(File::open(&source_file_path).unwrap());
for line in source_file.lines() {
let line_str = match line {
Ok(line_str) => line_str,
Err(_) => break,
};
if line_str.starts_with("impl Methods for Methods_") {
const PREFIX_LEN: usize = 25;
let number_len = line_str[PREFIX_LEN..].chars().take_while(|chr| {
chr.is_digit(10)
}).count();
let number: i32 = line_str[PREFIX_LEN..(PREFIX_LEN + number_len)].parse().unwrap();
file_implementations.push(number);
}
}
}
writeln!(&mut target_file, "use super::Methods;").unwrap();
for (source_file_name, impls) in &implementations {
let module_name = match source_file_name.split('.').next() {
Some("main") => "super",
Some(name) => name,
None => panic!(),
};
for impl_number in impls {
writeln!(&mut target_file, "use {}::Methods_{};", module_name, impl_number).unwrap();
}
}
let all_impls = implementations.values().flat_map(|impls| impls.iter());
writeln!(&mut target_file, "
pub struct Object;
impl Object {{
pub fn new(impl_number: i32) -> Box<Methods + 'static> {{
match impl_number {{
").unwrap();
for impl_number in all_impls {
writeln!(&mut target_file,
" {} => Box::new(Methods_{}),", impl_number, impl_number).unwrap();
}
writeln!(&mut target_file, "
_ => panic!(\"Unknown impl number: {{}}\", impl_number),
}}
}}
}}").unwrap();
}
The generated code:
use super::Methods;
use super::Methods_2;
use implementations::Methods_0;
use implementations::Methods_1;
pub struct Object;
impl Object {
pub fn new(impl_number: i32) -> Box<Methods + 'static> {
match impl_number {
2 => Box::new(Methods_2),
0 => Box::new(Methods_0),
1 => Box::new(Methods_1),
_ => panic!("Unknown impl number: {}", impl_number),
}
}
}