PyTorch version of as simple Keras LSTM model - keras

Trying to translate a simple LSTM model in Keras to PyTorch code. The Keras model converges after just 200 epochs, while the PyTorch model:
needs many more epochs to reach the same loss level (200 vs. ~8000)
seems to overfit the inputs because the predicted value is not near 100
This is the Keras code:
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
X = array([10,20,30,20,30,40,30,40,50,40,50,60,50,60,70,60,70,80]).reshape((6,3,1))
y = array([40,50,60,70,80,90])
model = Sequential()
model.add(LSTM(50, activation='relu', recurrent_activation='sigmoid', input_shape=(3, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
model.fit(X, y, epochs=200, verbose=1)
x_input = array([70, 80, 90]).reshape((1, 3, 1))
yhat = model.predict(x_input, verbose=0)
print(yhat)
And this is the equivalent PyTorch code:
from numpy import array
import torch
import torch.nn as nn
import torch.nn.functional as F
X = torch.tensor([10,20,30,20,30,40,30,40,50,40,50,60,50,60,70,60,70,80]).float().reshape(6,3,1)
y = torch.tensor([40,50,60,70,80,90]).float().reshape(6,1)
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.lstm = nn.LSTM(input_size=1, hidden_size=50, num_layers=1, batch_first=True)
self.fc = nn.Linear(50, 1)
def forward(self, x):
batches = x.size(0)
h0 = torch.zeros([1, batches, 50])
c0 = torch.zeros([1, batches, 50])
(x, _) = self.lstm(x, (h0, c0))
x = x[:,-1,:] # Keep only the output of the last iteration. Before shape (6,3,50), after shape (6,50)
x = F.relu(x)
x = self.fc(x)
return x
model = Model()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
n_epochs = 8000
for epoch in range(n_epochs):
model.train()
optimizer.zero_grad()
y_ = model(X)
loss = criterion(y_, y)
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}/{n_epochs}, loss = {loss.item()}")
model.eval()
x_input = torch.tensor([70, 80, 90]).float().reshape((1, 3, 1))
yhat = model(x_input)
print(yhat)
The only possible difference is the initial weight and bias values, but I don't think that slightly different weights and biases may account for such a big difference in behavior.
What am I missing in the PyTorch code?

The behaviour difference is because of the activation function in the LSTM API. By changing the activation to tanh, I can reproduce the problem in Keras too.
model.add(LSTM(50, activation='tanh', recurrent_activation='sigmoid', input_shape=(3, 1)))
There is no option to change the activation function to 'relu' in the pytorch LSTM API.
https://pytorch.org/docs/stable/nn.html#lstm
Taking the LSTM implementation from here, https://github.com/huggingface/torchMoji/blob/master/torchmoji/lstm.py
and changing hardsigmoid/tanh to sigmoid/relu, the model converges in pytorch as well.

I think you are initializing h0,c0 every time which is require at initial. So, better use the code below that i have modified. You can go through this link for RNN in pytorch: https://pytorch.org/docs/stable/nn.html?highlight=rnn#torch.nn.RNN
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.rnn = nn.RNN(input_size=1, hidden_size=50, num_layers=1, nonlinearity="relu", batch_first=True)
self.fc = nn.Linear(50, 1)
def forward(self, x):
# batches = x.size(0)
# h0 = torch.zeros([1, batches, 50])
# c0 = torch.zeros([1, batches, 50])
# (x, _) = self.lstm(x, (h0, c0))
(x, _) = self.rnn(x)
x = x[:,-1,:] # Keep only the output of the last iteration. Before shape (6,3,50), after shape (6,50)
x = F.relu(x)
x = self.fc(x)
return x
This gives good result of prediction within 2500 epochs.
I want to know why have you written below line of code and what is the purpose of it. So, that i can try to make it better.
x = x[:,-1,:] # Keep only the output of the last iteration. Before shape (6,3,50), after shape (6,50)

Related

Function AddmmBackward returned an invalid gradient

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 3)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = NeuralNetwork()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, random_split
def UploadData(path, train):
#set up transforms for train and test datasets
train_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(), transforms.transforms.ToTensor()])
valid_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(), transforms.transforms.ToTensor()])
test_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor()])
#set up datasets from Image Folders
train_dataset = datasets.ImageFolder(path + '/train', transform=train_transforms)
valid_dataset = datasets.ImageFolder(path + '/validation', transform=valid_transforms)
test_dataset = datasets.ImageFolder(path + '/test', transform=test_transforms)
#set up dataloaders with batch size of 32
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
validloader = torch.utils.data.DataLoader(valid_dataset, batch_size=32, shuffle=True)
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True)
return trainloader, validloader, testloader
trainloader, validloader, testloader = UploadData("/home/lns/research/dataset", True)
epochs = 5
min_valid_loss = np.inf
for e in range(epochs):
train_loss = 0.0
for data, labels in trainloader:
# Transfer Data to GPU if available
if torch.cuda.is_available():
print("using GPU for data")
data, labels = data.cuda(), labels.cuda()
# Clear the gradients
optimizer.zero_grad()
# Forward Pass
target = net(data)
# Find the Loss
loss = criterion(target,labels)
# Calculate gradients
loss.backward()
# Update Weights
optimizer.step()
# Calculate Loss
train_loss += loss.item()
valid_loss = 0.0
model.eval() # Optional when not using Model Specific layer
for data, labels in validloader:
# Transfer Data to GPU if available
if torch.cuda.is_available():
print("using GPU for data")
data, labels = data.cuda(), labels.cuda()
# Forward Pass
target = net(data)
# Find the Loss
loss = criterion(target,labels)
# Calculate Loss
valid_loss += loss.item()
print('Epoch ',e+1, '\t\t Training Loss: ',train_loss / len(trainloader),' \t\t Validation Loss: ',valid_loss / len(validloader))
if min_valid_loss > valid_loss:
print("Validation Loss Decreased(",min_valid_loss,"--->",valid_loss,") \t Saving The Model")
min_valid_loss = valid_loss
# Saving State Dict
torch.save(net.state_dict(), '/home/lns/research/MODEL.pth')
After searching a lot i am asking for help. Can someone help me
understand why this error is occuring in backward propagation.
i followed pytorch cnn tutorail and geeksforgeeks tutorial
dataset is x ray images transformed into grayscale and resize to 255
Is my neural network is wrong or data is not processed correctly?
This is a size mismmatch between the output of your CNN and the number of neurons on on your first fully-connected layer. Because of missing padding, the number of elements when flattened is 16*4*4 i.e. 256 (and not 16*5*5):
self.fc1 = nn.Linear(256, 120)
Once modified, the model will run correctly:
>>> model = NeuralNetwork()
>>> model(torch.rand(1, 1, 28, 28)).shape
torch.Size([1, 3])
Alternatively, you can use an nn.LazyLinear which will deduce the in_feature argument during the very first inference based on its input shape.
self.fc1 = nn.LazyLinear(120)

Calculate gradient of validation error w.r.t inputs using Keras/Tensorflow or autograd

I need to calculate the gradient of the validation error w.r.t inputs x. I'm trying to see how much the validation error changes when I perturb one of the training samples.
The validation error (E) explicitly depends on the model weights (W).
The model weights explicitly depend on the inputs (x and y).
Therefore, the validation error implicitly depends on the inputs.
I'm trying to calculate the gradient of E w.r.t x directly.
An alternative approach would be to calculate the gradient of E w.r.t W (can easily be calculated) and the gradient of W w.r.t x (cannot do at the moment), which would allow the gradient of E w.r.t x to be calculated.
I have attached a toy example. Thanks in advance!
import numpy as np
import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.utils import to_categorical
import tensorflow as tf
from autograd import grad
train_images = mnist.train_images()
train_labels = mnist.train_labels()
test_images = mnist.test_images()
test_labels = mnist.test_labels()
# Normalize the images.
train_images = (train_images / 255) - 0.5
test_images = (test_images / 255) - 0.5
# Flatten the images.
train_images = train_images.reshape((-1, 784))
test_images = test_images.reshape((-1, 784))
# Build the model.
model = Sequential([
Dense(64, activation='relu', input_shape=(784,)),
Dense(64, activation='relu'),
Dense(10, activation='softmax'),
])
# Compile the model.
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'],
)
# Train the model.
model.fit(
train_images,
to_categorical(train_labels),
epochs=5,
batch_size=32,
)
model.save_weights('model.h5')
# Load the model's saved weights.
# model.load_weights('model.h5')
calculate_mse = tf.keras.losses.MeanSquaredError()
test_x = test_images[:5]
test_y = to_categorical(test_labels)[:5]
train_x = train_images[:1]
train_y = to_categorical(train_labels)[:1]
train_y = tf.convert_to_tensor(train_y, np.float32)
train_x = tf.convert_to_tensor(train_x, np.float64)
with tf.GradientTape() as tape:
tape.watch(train_x)
model.fit(train_x, train_y, epochs=1, verbose=0)
valid_y_hat = model(test_x, training=False)
mse = calculate_mse(test_y, valid_y_hat)
de_dx = tape.gradient(mse, train_x)
print(de_dx)
# approach 2 - does not run
def calculate_validation_mse(x):
model.fit(x, train_y, epochs=1, verbose=0)
valid_y_hat = model(test_x, training=False)
mse = calculate_mse(test_y, valid_y_hat)
return mse
train_x = train_images[:1]
train_y = to_categorical(train_labels)[:1]
validation_gradient = grad(calculate_validation_mse)
de_dx = validation_gradient(train_x)
print(de_dx)
Here's how you can do this. Derivation is as below.
Few things to note,
I have reduced the feature size from 784 to 256 as I was running out of memory in colab (line marked in the code) . Might have to do some mem profiling to find out why
Only computed grads for the first layer. Easily extendable to other layers
Disclaimer: this derivation is correct to best of my knowledge. Please do some research and verify that it is the case. You will run into memory issues for larger inputs and layer sizes.
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.utils import to_categorical
import tensorflow as tf
f = 256
model = Sequential([
Dense(64, activation='relu', input_shape=(f,)),
Dense(64, activation='relu'),
Dense(10, activation='softmax'),
])
# Compile the model.
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'],
)
w = model.weights[0]
# Inputs and labels
x_tr = tf.Variable(np.random.normal(size=(1,f)), shape=(1, f), dtype='float32')
y_tr = np.random.choice([0,1,2,3,4,5,6,7,8,9], size=(1,1))
y_tr_onehot = tf.keras.utils.to_categorical(y_tr, num_classes=10).astype('float32')
x_v = tf.Variable(np.random.normal(size=(1,f)), shape=(1, f), dtype='float32')
y_v = np.random.choice([0,1,2,3,4,5,6,7,8,9], size=(1,1))
y_v_onehot = tf.keras.utils.to_categorical(y_v, num_classes=10).astype('float32')
# In the context of GradientTape
with tf.GradientTape() as tape1:
with tf.GradientTape() as tape2:
y_tr_pred = model(x_tr)
tr_loss = tf.keras.losses.MeanSquaredError()(y_tr_onehot, y_tr_pred)
tmp_g = tape2.gradient(tr_loss, w)
print(tmp_g.shape)
# d(dE_tr/d(theta))/dx
# Warning this step consumes lot of memory for large layers
lr = 0.001
grads_1 = -lr * tape1.jacobian(tmp_g, x_tr)
with tf.GradientTape() as tape3:
y_v_pred = model(x_v)
v_loss = tf.keras.losses.MeanSquaredError()(y_v_onehot, y_v_pred)
# dE_val/d(theta)
grads_2 = tape3.gradient(v_loss, w)[tf.newaxis, :]
# Just crunching the dimension to get the final desired shape of (1,256)
grad = tf.matmul(tf.reshape(grads_2,[1, -1]), tf.reshape(tf.transpose(grads_1,[2,1,0,3]),[1, -1, 256]))

I get something wrong when use model.train() and model.eval() on pytorch

I have prepare features and their labels as blow; I want to build a model which is constructed by transformers' encoder and then add a linear layer to predict a value. but I got some error when I use the model to predict after its training.
At first I run below code:
import torch
from torch import nn
features = torch.rand(bach_size, channels, lenght)
labels = torch.rand(batch_size)
class TransformerModel(nn.Module):
def __init__(self):
super(TransformerModel, self).__init__()
encoder_layer = nn.TransformerEncoderLayer(d_model=8, nhead=8, dropout=0.5)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, 6)
self.decoder = nn.Linear(40, 1)
def forward(self, src):
encoded = self.transformer_encoder(src.transpose(1, 0)).transpose(1, 0)
pred = self.decoder(encoded.reshape(encoded.shape[0], -1))
return pred
model = TransformerModel()
criterion = nn.MSELoss()
lr = 0.3 # learning rate
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
def train():
model.train() # Turn on the train mode
optimizer.zero_grad()
output = model(features)
loss = criterion(output.view(-1, 1), labels.view(-1, 1))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
return loss.item()
for _ in range(100):
train()
After that, I predict features by the below codes:
model.eval()
output = model(features)
I get all values of 'output' are the same, and if use 'model.train()', the 'output' seems Ok; so what is the problem? or the model was built wrong?

Measuring uncertainty using MC Dropout on pytorch

I am trying to implement Bayesian CNN using Mc Dropout on Pytorch,
the main idea is that by applying dropout at test time and running over many forward passes , you get predictions from a variety of different models.
I’ve found an application of the Mc Dropout and I really did not get how they applied this method and how exactly they did choose the correct prediction from the list of predictions
here is the code
def mcdropout_test(model):
model.train()
test_loss = 0
correct = 0
T = 100
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output_list = []
for i in xrange(T):
output_list.append(torch.unsqueeze(model(data), 0))
output_mean = torch.cat(output_list, 0).mean(0)
test_loss += F.nll_loss(F.log_softmax(output_mean), target, size_average=False).data[0] # sum up batch loss
pred = output_mean.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nMC Dropout Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
train()
mcdropout_test()
I have replaced
data, target = Variable(data, volatile=True), Variable(target)
by adding
with torch.no_grad(): at the beginning
And this is how I have defined my CNN
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 192, 5, padding=2)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(192, 192, 5, padding=2)
self.fc1 = nn.Linear(192 * 8 * 8, 1024)
self.fc2 = nn.Linear(1024, 256)
self.fc3 = nn.Linear(256, 10)
self.dropout = nn.Dropout(p=0.3)
nn.init.xavier_uniform_(self.conv1.weight)
nn.init.constant_(self.conv1.bias, 0.0)
nn.init.xavier_uniform_(self.conv2.weight)
nn.init.constant_(self.conv2.bias, 0.0)
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.constant_(self.fc1.bias, 0.0)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.constant_(self.fc2.bias, 0.0)
nn.init.xavier_uniform_(self.fc3.weight)
nn.init.constant_(self.fc3.bias, 0.0)
def forward(self, x):
x = self.pool(F.relu(self.dropout(self.conv1(x)))) # recommended to add the relu
x = self.pool(F.relu(self.dropout(self.conv2(x)))) # recommended to add the relu
x = x.view(-1, 192 * 8 * 8)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(self.dropout(x)))
x = self.fc3(self.dropout(x)) # no activation function needed for the last layer
return x
Can anyone help me to get the right implementation of the Monte Carlo Dropout method on CNN?
Implementing MC Dropout in Pytorch is easy. All that is needed to be done is to set the dropout layers of your model to train mode. This allows for different dropout masks to be used during the different various forward passes. Below is an implementation of MC Dropout in Pytorch illustrating how multiple predictions from the various forward passes are stacked together and used for computing different uncertainty metrics.
import sys
import numpy as np
import torch
import torch.nn as nn
def enable_dropout(model):
""" Function to enable the dropout layers during test-time """
for m in model.modules():
if m.__class__.__name__.startswith('Dropout'):
m.train()
def get_monte_carlo_predictions(data_loader,
forward_passes,
model,
n_classes,
n_samples):
""" Function to get the monte-carlo samples and uncertainty estimates
through multiple forward passes
Parameters
----------
data_loader : object
data loader object from the data loader module
forward_passes : int
number of monte-carlo samples/forward passes
model : object
keras model
n_classes : int
number of classes in the dataset
n_samples : int
number of samples in the test set
"""
dropout_predictions = np.empty((0, n_samples, n_classes))
softmax = nn.Softmax(dim=1)
for i in range(forward_passes):
predictions = np.empty((0, n_classes))
model.eval()
enable_dropout(model)
for i, (image, label) in enumerate(data_loader):
image = image.to(torch.device('cuda'))
with torch.no_grad():
output = model(image)
output = softmax(output) # shape (n_samples, n_classes)
predictions = np.vstack((predictions, output.cpu().numpy()))
dropout_predictions = np.vstack((dropout_predictions,
predictions[np.newaxis, :, :]))
# dropout predictions - shape (forward_passes, n_samples, n_classes)
# Calculating mean across multiple MCD forward passes
mean = np.mean(dropout_predictions, axis=0) # shape (n_samples, n_classes)
# Calculating variance across multiple MCD forward passes
variance = np.var(dropout_predictions, axis=0) # shape (n_samples, n_classes)
epsilon = sys.float_info.min
# Calculating entropy across multiple MCD forward passes
entropy = -np.sum(mean*np.log(mean + epsilon), axis=-1) # shape (n_samples,)
# Calculating mutual information across multiple MCD forward passes
mutual_info = entropy - np.mean(np.sum(-dropout_predictions*np.log(dropout_predictions + epsilon),
axis=-1), axis=0) # shape (n_samples,)
Moving on to the implementation which is posted in the question above, multiple predictions from T different forward passes are obtained by first setting the model to train mode (model.train()). Note that this is not desirable because unwanted stochasticity will be introduced in the predictions if there are layers other than dropout such as batch-norm in the model. Hence the best way is to just set the dropout layers to train mode as shown in the snippet above.

Using tf.data.Dataset as training input to Keras model NOT working

I have a simple code, which DOES work, for training a Keras model in Tensorflow using numpy arrays as features and labels. If I then wrap these numpy arrays using tf.data.Dataset.from_tensor_slices in order to train the same Keras model using a tensorflow dataset, I get an error. I haven't been able to figure out why (it may be a tensorflow or keras bug, but I may also be missing something). I'm on python 3, tensorflow is 1.10.0, numpy is 1.14.5, no GPU involved.
OBS1: The possibility of using tf.data.Dataset as a Keras input is showed in https://www.tensorflow.org/guide/keras, under "Input tf.data datasets".
OBS2: In the code below, the code under "#Train with numpy arrays" is being executed, using numpy arrays. If this code is commented and the code under "#Train with tf.data datasets" is used instead, the error will be reproduced.
OBS3: In line 13, which is commented and starts with "###WORKAROUND 1###", if the comment is removed and the line is used for tf.data.Dataset inputs, the error changes, even though I can't completely understand why.
The complete code is:
import tensorflow as tf
import numpy as np
np.random.seed(1)
tf.set_random_seed(1)
print(tf.__version__)
print(np.__version__)
#Import mnist dataset as numpy arrays
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()#Import
x_train, x_test = x_train / 255.0, x_test / 255.0 #normalizing
###WORKAROUND 1###y_train, y_test = (y_train.astype(dtype='float32'), y_test.astype(dtype='float32'))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1]*x_train.shape[2])) #reshaping 28 x 28 images to 1D vectors, similar to Flatten layer in Keras
batch_size = 32
#Create a tf.data.Dataset object equivalent to this data
tfdata_dataset_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
tfdata_dataset_train = tfdata_dataset_train.batch(batch_size).repeat()
#Creates model
keras_model = tf.keras.models.Sequential([
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2, seed=1),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
#Compile the model
keras_model.compile(optimizer='adam',
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=['accuracy'])
#Train with numpy arrays
keras_training_history = keras_model.fit(x_train,
y_train,
initial_epoch=0,
epochs=1,
batch_size=batch_size
)
#Train with tf.data datasets
#keras_training_history = keras_model.fit(tfdata_dataset_train,
# initial_epoch=0,
# epochs=1,
# steps_per_epoch=60000//batch_size
# )
print(keras_training_history.history)
The error observed when using tf.data.Dataset as input is:
(...)
ValueError: Tensor conversion requested dtype uint8 for Tensor with dtype float32: 'Tensor("metrics/acc/Cast:0", shape=(?,), dtype=float32)'
During handling of the above exception, another exception occurred:
(...)
TypeError: Input 'y' of 'Equal' Op has type float32 that does not match type uint8 of argument 'x'.
The error when removing the comment from line 13, as commented above in OBS3, is:
(...)
tensorflow.python.framework.errors_impl.InvalidArgumentError: In[0] is not a matrix
[[Node: dense/MatMul = MatMul[T=DT_FLOAT, _class=["loc:#training/Adam/gradients/dense/MatMul_grad/MatMul_1"], transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_sequential_input_0_0, dense/MatMul/ReadVariableOp)]]
Any help would be appreciated, including comments that you were able to reproduce the errors, so I can report the bug if it is the case.
I just upgraded to Tensorflow 1.10 to execute this code. I think that is the answer which is also discussed in the other Stackoverflow thread
This code executes but only if I remove the normalization as that line seems to use too much CPU memory. I see messages indicating that. I also reduced the cores.
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout, Input
np.random.seed(1)
tf.set_random_seed(1)
batch_size = 128
NUM_CLASSES = 10
print(tf.__version__)
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
#x_train, x_test = x_train / 255.0, x_test / 255.0 #normalizing
def tfdata_generator(images, labels, is_training, batch_size=128):
'''Construct a data generator using tf.Dataset'''
def preprocess_fn(image, label):
'''A transformation function to preprocess raw data
into trainable input. '''
x = tf.reshape(tf.cast(image, tf.float32), (28, 28, 1))
y = tf.one_hot(tf.cast(label, tf.uint8), NUM_CLASSES)
return x, y
dataset = tf.data.Dataset.from_tensor_slices((images, labels))
if is_training:
dataset = dataset.shuffle(1000) # depends on sample size
# Transform and batch data at the same time
dataset = dataset.apply(tf.contrib.data.map_and_batch(
preprocess_fn, batch_size,
num_parallel_batches=2, # cpu cores
drop_remainder=True if is_training else False))
dataset = dataset.repeat()
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
return dataset
training_set = tfdata_generator(x_train, y_train,is_training=True, batch_size=batch_size)
testing_set = tfdata_generator(x_test, y_test, is_training=False, batch_size=batch_size)
inputs = Input(shape=(28, 28, 1))
x = Conv2D(32, (3, 3), activation='relu', padding='valid')(inputs)
x = MaxPool2D(pool_size=(2, 2))(x)
x = Conv2D(64, (3, 3), activation='relu')(x)
x = MaxPool2D(pool_size=(2, 2))(x)
x = Flatten()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
outputs = Dense(NUM_CLASSES, activation='softmax')(x)
keras_model = tf.keras.Model(inputs, outputs)
#Compile the model
keras_model.compile('adam', 'categorical_crossentropy', metrics=['acc'])
#Train with tf.data datasets
keras_training_history = keras_model.fit(
training_set.make_one_shot_iterator(),
steps_per_epoch=len(x_train) // batch_size,
epochs=5,
validation_data=testing_set.make_one_shot_iterator(),
validation_steps=len(x_test) // batch_size,
verbose=1)
print(keras_training_history.history)
Installing the tf-nightly build, together with changing dtypes of some tensors (the error changes after installing tf-nightly), solved the problem, so it is an issue which (hopefully) will be solved in 1.11.
Related material: https://github.com/tensorflow/tensorflow/issues/21894
I am wondering how Keras is able to do 5 epochs when the
make_one_shot_iterator() which only supports iterating once through a
dataset?
could be given smth like iterations = len(y_train) * epochs - here shown for tf.v1
the code from Mohan Radhakrishnan still works in tf.v2 with little corrections in objects' belongings to new classes (in tf.v2) fixings - to make the code up-to-date... No more make_one_shot_iterator() needed
# >> author: Mohan Radhakrishnan
import tensorflow as tf
import tensorflow.keras
import numpy as np
from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout, Input
np.random.seed(1)
tf.random.set_seed(1)
batch_size = 128
NUM_CLASSES = 10
print(tf.__version__)
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
#x_train, x_test = x_train / 255.0, x_test / 255.0 #normalizing
def tfdata_generator(images, labels, is_training, batch_size=128):
'''Construct a data generator using tf.Dataset'''
def preprocess_fn(image, label):
'''A transformation function to preprocess raw data
into trainable input. '''
x = tf.reshape(tf.cast(image, tf.float32), (28, 28, 1))
y = tf.one_hot(tf.cast(label, tf.uint8), NUM_CLASSES)
return x, y
dataset = tf.data.Dataset.from_tensor_slices((images, labels))
if is_training:
dataset = dataset.shuffle(1000) # depends on sample size
# Transform and batch data at the same time
dataset = dataset.apply( tf.data.experimental.map_and_batch(
preprocess_fn, batch_size,
num_parallel_batches=2, # cpu cores
drop_remainder=True if is_training else False))
dataset = dataset.repeat()
dataset = dataset.prefetch( tf.data.experimental.AUTOTUNE)
return dataset
training_set = tfdata_generator(x_train, y_train,is_training=True, batch_size=batch_size)
testing_set = tfdata_generator(x_test, y_test, is_training=False, batch_size=batch_size)
inputs = Input(shape=(28, 28, 1))
x = Conv2D(32, (3, 3), activation='relu', padding='valid')(inputs)
x = MaxPool2D(pool_size=(2, 2))(x)
x = Conv2D(64, (3, 3), activation='relu')(x)
x = MaxPool2D(pool_size=(2, 2))(x)
x = Flatten()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
outputs = Dense(NUM_CLASSES, activation='softmax')(x)
keras_model = tf.keras.Model(inputs, outputs)
#Compile the model
keras_model.compile('adam', 'categorical_crossentropy', metrics=['acc'])
#Train with tf.data datasets
# training_set.make_one_shot_iterator() - 'PrefetchDataset' object has no attribute 'make_one_shot_iterator'
keras_training_history = keras_model.fit(
training_set,
steps_per_epoch=len(x_train) // batch_size,
epochs=5,
validation_data=testing_set,
validation_steps=len(x_test) // batch_size,
verbose=1)
print(keras_training_history.history)
not loading data locally, just easy DataFlow - that is very convinient - Thanks a lot - hope my corrections are proper

Resources