White Balance a photo from a known point - python-3.x
White Balancing is a rather well-covered topic, but most of the answers I have seen cover automatic white balancing techniques for an entire image that does not have a known point for what is white, gray, and black. I cannot seem to find many that cover white balancing from a known point. I have the script (below) that takes an image of a color card (Spyder Checkr 48) and returns the white, 20% Gray, and Black color card blocks:
Color L A B sR sG sB aR aG aB
Card White 96.04 2.16 2.6 249 242 238 247 242 237
20% Gray 80.44 1.17 2.05 202 198 195 199 196 193
Card Black 16.91 1.43 -0.81 43 41 43 46 46 47
Question: Since I know the ground truth LAB, sRGB and AdobeRGB values for specific parts of the image, what would be the best way to white balance the image?
Here is a link to the images I am working with. This is the code for extracting the color card blocks (I currently am running this on Windows, Python 3.7):
from __future__ import print_function
import cv2
import imutils
import numpy as np
from matplotlib import pyplot as plt
import os
import sys
image = cv2.imread("PATH_TO_IMAGE")
template = cv2.imread("PATH_TO_TEMPLATE")
rtemplate = cv2.imread("PATH_TO_RIGHT_TEMPLATE")
def sift(image):
sift = cv2.xfeatures2d.SIFT_create()
kp, des = sift.detectAndCompute(image, None)
return kp, des
def sift_match(im1, im2, vis=False, save=False):
MIN_MATCH_COUNT = 10
FLANN_INDEX_KDTREE = 0
kp1, des1 = sift(im1)
kp2, des2 = sift(im2)
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=7)
search_params = dict(checks=100)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# Need to draw only good matches, so create a mask
matchesMask = [[0, 0] for i in range(len(matches))]
if vis is True:
draw_params = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask,
flags=0)
im3 = cv2.drawMatchesKnn(im1, kp1, im2, kp2, matches, None, **draw_params)
if save:
cv2.imwrite("tempSIFT_Match.png", im3)
plt.imshow(im3), plt.show()
good = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good.append(m)
return kp1, des1, kp2, des2, good
def smartextractor(im1, im2, vis=False):
# Detect features and compute descriptors.
kp1, d1, kp2, d2, matches = sift_match(im1, im2, vis)
kp1 = np.asarray(kp1)
kp2 = np.asarray(kp2)
# Extract location of good matches
points1 = np.zeros((len(matches), 2), dtype=np.float32)
points2 = np.zeros((len(matches), 2), dtype=np.float32)
for i, match in enumerate(matches):
points1[i, :] = kp1[match.queryIdx].pt
points2[i, :] = kp2[match.trainIdx].pt
# Find homography
h, mask = cv2.findHomography(points1, points2, cv2.RANSAC)
if h is None:
print("could not find homography")
return None, None
# Use homography
height, width, channels = im2.shape
im1Reg = cv2.warpPerspective(im1, h, (width, height))
return im1Reg, h
def show_images(images, cols=1, titles=None):
"""
Display a list of images in a single figure with matplotlib.
"""
assert ((titles is None) or (len(images) == len(titles)))
n_images = len(images)
if titles is None: titles = ['Image (%d)' % i for i in range(1, n_images + 1)]
fig = plt.figure()
for n, (image, title) in enumerate(zip(images, titles)):
a = fig.add_subplot(cols, np.ceil(n_images / float(cols)), n + 1)
if image.ndim == 2:
plt.gray()
plt.imshow(image)
a.set_title(title)
fig.set_size_inches(np.array(fig.get_size_inches()) * n_images)
plt.show()
def Sobel(img, bilateralFilter=True):
# timestart = time.clock()
try:
img = cv2.imread(img, 0)
except TypeError:
None
try:
rheight, rwidth, rdepth = img.shape
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
except ValueError:
raise TypeError
# cv2.imwrite('temp.png',img)
_, s, v = cv2.split(img1)
b, g, r = cv2.split(img)
if bilateralFilter is True:
s = cv2.bilateralFilter(s, 11, 17, 17)
v = cv2.bilateralFilter(v, 11, 17, 17)
b = cv2.bilateralFilter(b, 11, 17, 17)
g = cv2.bilateralFilter(g, 11, 17, 17)
r = cv2.bilateralFilter(r, 11, 17, 17)
# calculate sobel in x,y,diagonal directions with the following kernels
sobelx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=np.float32)
sobely = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=np.float32)
sobeldl = np.array([[0, 1, 2], [-1, 0, 1], [-2, -1, 0]], dtype=np.float32)
sobeldr = np.array([[2, 1, 0], [1, 0, -1], [0, -1, -2]], dtype=np.float32)
# calculate the sobel on value of hsv
gx = cv2.filter2D(v, -1, sobelx)
gy = cv2.filter2D(v, -1, sobely)
gdl = cv2.filter2D(v, -1, sobeldl)
gdr = cv2.filter2D(v, -1, sobeldr)
# combine sobel on value of hsv
xylrv = 0.25 * gx + 0.25 * gy + 0.25 * gdl + 0.25 * gdr
# calculate the sobel on saturation of hsv
sx = cv2.filter2D(s, -1, sobelx)
sy = cv2.filter2D(s, -1, sobely)
sdl = cv2.filter2D(s, -1, sobeldl)
sdr = cv2.filter2D(s, -1, sobeldr)
# combine sobel on value of hsv
xylrs = 0.25 * sx + 0.25 * sy + 0.25 * sdl + 0.25 * sdr
# combine value sobel and saturation sobel
xylrc = 0.5 * xylrv + 0.5 * xylrs
xylrc[xylrc < 6] = 0
# calculate the sobel on value on green
grx = cv2.filter2D(g, -1, sobelx)
gry = cv2.filter2D(g, -1, sobely)
grdl = cv2.filter2D(g, -1, sobeldl)
grdr = cv2.filter2D(g, -1, sobeldr)
# combine sobel on value on green
xylrgr = 0.25 * grx + 0.25 * gry + 0.25 * grdl + 0.25 * grdr
# calculate the sobel on blue
bx = cv2.filter2D(b, -1, sobelx)
by = cv2.filter2D(b, -1, sobely)
bdl = cv2.filter2D(b, -1, sobeldl)
bdr = cv2.filter2D(b, -1, sobeldr)
# combine sobel on value on blue
xylrb = 0.25 * bx + 0.25 * by + 0.25 * bdl + 0.25 * bdr
# calculate the sobel on red
rx = cv2.filter2D(r, -1, sobelx)
ry = cv2.filter2D(r, -1, sobely)
rdl = cv2.filter2D(r, -1, sobeldl)
rdr = cv2.filter2D(r, -1, sobeldr)
# combine sobel on value on red
xylrr = 0.25 * rx + 0.25 * ry + 0.25 * rdl + 0.25 * rdr
# combine value sobel and saturation sobel
xylrrgb = 0.33 * xylrgr + 0.33 * xylrb + 0.33 * xylrr
xylrrgb[xylrrgb < 6] = 0
# combine HSV and RGB sobel outputs
xylrc = 0.5 * xylrc + 0.5 * xylrrgb
xylrc[xylrc < 6] = 0
xylrc[xylrc > 25] = 255
return xylrc
print("extracting image")
extractedImage, _ = smartextractor(image, template)
print("extracting right image")
rextractedImage, _ = smartextractor(extractedImage, rtemplate, vis=False)
grextractedImage = cv2.cvtColor(rextractedImage, cv2.COLOR_BGR2GRAY)
bfsobelImg = Sobel(rextractedImage)
sobelImg = Sobel(rextractedImage, bilateralFilter=False)
csobelImg = cv2.add(bfsobelImg, sobelImg)
csobelImg[csobelImg < 6] = 0
csobelImg[csobelImg > 18] = 255
csobelImg = csobelImg.astype(np.uint8)
img2 = csobelImg.copy()
ret, thresh = cv2.threshold(img2, 18, 255, 0)
contours = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
contours = sorted(contours, key=cv2.contourArea, reverse=True)
count = 0
trigger = False
for c in contours:
# approximate the contour
peri = cv2.arcLength(c, True)
contours[count] = cv2.approxPolyDP(c, 0.05 * peri, True)
if len(contours[count]) == 4:
if trigger is False:
screenCnt = contours[count]
trigger = True
count += 1
tl = screenCnt[0]
tr = screenCnt[1]
bl = screenCnt[3]
br = screenCnt[2]
tLy, tLx = tl[0]
tRy, tRx = tr[0]
bLy, bLx = bl[0]
bRy, bRx = br[0]
ratio = .15
realSpace = (3/16)
boxwidth = int(((tRx - tLx) + (bRx - bLx))*.5 - (tLx + bLx)*.5)
boxheight = int(((bRy - tRy) + (bLy - tLy))*.5 - (tRy + tLy)*.5)
spaceWidth = int((boxwidth + boxheight)*.5*realSpace)
boxcenter = [int(((bRy - tRy)*.5 + (bLy - tLy)*.5)*.5), int(((tRx - tLx)*.5 + (bRx - bLx)*.5)*.5)]
roitl = [boxcenter[0] - int(ratio*boxheight), boxcenter[1] - int(ratio*boxwidth)]
roitr = [boxcenter[0] - int(ratio*boxheight), boxcenter[1] + int(ratio*boxwidth)]
roibl = [boxcenter[0] + int(ratio*boxheight), boxcenter[1] - int(ratio*boxwidth)]
roibr = [boxcenter[0] + int(ratio*boxheight), boxcenter[1] + int(ratio*boxwidth)]
spacing = int((boxwidth + boxheight)*.5)+spaceWidth
roiWhite = np.array((roitl, roitr, roibr, roibl))
roiGray = np.array(([roitl[1], roitl[0]+spacing*1], [roitr[1], roitr[0]+spacing*1],
[roibr[1], roibr[0]+spacing*1], [roibl[1], roibl[0]+spacing*1]))
roiBlack = np.array(([roitl[1], roitl[0]+spacing*6], [roitr[1], roitr[0]+spacing*6],
[roibr[1], roibr[0]+spacing*6], [roibl[1], roibl[0]+spacing*6]))
whiteAvgb, whiteAvgg, whiteAvgr, _ = cv2.mean(rextractedImage[(roitl[0]+spacing*0):(roibr[0]+spacing*0),
roitl[1]:roibr[1]])
grayAvgb, grayAvgg, grayAvgr, _ = cv2.mean(rextractedImage[(roitl[0]+spacing*1):(roibr[0]+spacing*1),
roitl[1]:roibr[1]])
blackAvgb, blackAvgg, blackAvgr, _ = cv2.mean(rextractedImage[(roitl[0]+spacing*6):(roibr[0]+spacing*6),
roitl[1]:roibr[1]])
whiteROI = rextractedImage[(roitl[0]+spacing*0):(roibr[0]+spacing*0), roitl[1]:roibr[1]]
grayROI = rextractedImage[(roitl[0]+spacing*1):(roibr[0]+spacing*1), roitl[1]:roibr[1]]
blackROI = rextractedImage[(roitl[0]+spacing*6):(roibr[0]+spacing*6), roitl[1]:roibr[1]]
imageList = [whiteROI, grayROI, blackROI]
show_images(imageList, cols=1)
correctedImage = rextractedImage.copy()
whiteROI[:, :, 0] = whiteAvgb
whiteROI[:, :, 1] = whiteAvgg
whiteROI[:, :, 2] = whiteAvgr
grayROI[:, :, 0] = grayAvgb
grayROI[:, :, 1] = grayAvgg
grayROI[:, :, 2] = grayAvgr
blackROI[:, :, 0] = blackAvgb
blackROI[:, :, 1] = blackAvgg
blackROI[:, :, 2] = blackAvgr
imageList = [whiteROI, grayROI, blackROI]
show_images(imageList, cols=1)
# SPYDER COLOR CHECKR Values: http://www.bartneck.de/2017/10/24/patch-color-definitions-for-datacolor-spydercheckr-48/
blank = np.zeros_like(csobelImg)
maskedImg = blank.copy()
maskedImg = cv2.fillConvexPoly(maskedImg, roiWhite, 255)
maskedImg = cv2.fillConvexPoly(maskedImg, roiGray, 255)
maskedImg = cv2.fillConvexPoly(maskedImg, roiBlack, 255)
res = cv2.bitwise_and(rextractedImage, rextractedImage, mask=maskedImg)
# maskedImg = cv2.fillConvexPoly(maskedImg, roi2Black, 255)
cv2.drawContours(blank, contours, -1, 255, 3)
outputSquare = np.zeros_like(csobelImg)
cv2.drawContours(outputSquare, [screenCnt], -1, 255, 3)
imageList = [rextractedImage, grextractedImage, bfsobelImg, sobelImg, csobelImg, blank, outputSquare, maskedImg, res]
show_images(imageList, cols=3)
sys.exit()
Given the RGB value of a white patch, the image can be corrected for white balance by dividing by that value. That is, applying a linear transformation that makes the white patch have the same level in the three channels:
lum = (whiteR + whiteG + whiteB)/3
imgR = imgR * lum / whiteR
imgG = imgG * lum / whiteG
imgB = imgB * lum / whiteB
Multiplying by lum makes it so that the average intensity doesn’t change.
(The computation of lum will be better if using proper weights: 0.2126, 0.7152, 0.0722, but I wanted to keep it simple. This would only make a big difference if the input white is way off the mark, in which case you'll have other issues too.)
Note that this transformation is best applied in linear RGB space. Both the image and the RGB values for white should first be converted to linear RGB if the image is stored in sRGB or similar (a raw image from the camera would be linear RGB, a JPEG would be sRGB). See here for the relevant equations.
For better precision, you can apply the above using also the RGB values of the grey patch. Take the average multiplication factor (whiteR/lum) derived from the white and grey patches, for each channel, and apply those to the image.
The black level could be subtracted from the image, prior to determining the white RGB values and correcting for white balance. This will improve contrast and color perception, but not part of white balancing.
A full color correction is way more complex, I will not go into that.
Related
How to limit the number of rectangles formed in opencv python cv2.rectangle()?
Making to program to detect closeness of obstacles using pytorch then finding the obstacle using opencv. Took a model off kaggle in order to make a depth map. Then used opencv to make the rectangle for the most orange object with a minimum area of 18500. import cv2 import torch import time import numpy as np #model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed) model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed) #model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed) midas = torch.hub.load("intel-isl/MiDaS", model_type) device = torch.device("cuda") midas.to(device) midas.eval() midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") if model_type == "DPT_Large" or model_type == "DPT_Hybrid": transform = midas_transforms.dpt_transform else: transform = midas_transforms.small_transform cap = cv2.VideoCapture(0) while cap.isOpened(): success, img = cap.read() start = time.time() img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) input_batch = transform(img).to(device) # Prediction and resize to original resolution with torch.no_grad(): prediction = midas(input_batch) prediction = torch.nn.functional.interpolate( prediction.unsqueeze(1), size=img.shape[:2], mode="bilinear", align_corners=False, ).squeeze() depth_map = prediction.cpu().numpy() depth_map = cv2.normalize(depth_map, None, 0, 1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_64F) end = time.time() totalTime = end - start fps = 1 / totalTime img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) depth_map = (depth_map*255).astype(np.uint8) depth_map = cv2.applyColorMap(depth_map , cv2.COLORMAP_MAGMA) dim = (192*3, 108*4) img = cv2.resize(img, dim, interpolation=cv2.INTER_AREA) cv2.imshow('Image', img) cv2.imshow('Depth Map', depth_map) hsvFrame = cv2.cvtColor(depth_map, cv2.COLOR_BGR2HSV) red_lower = np.array([10, 100, 20], np.uint8) red_upper = np.array([25, 255, 255], np.uint8) red_mask = cv2.inRange(hsvFrame, red_lower, red_upper) kernal = np.ones((5, 5), "uint8") red_mask = cv2.dilate(red_mask, kernal) res_red = cv2.bitwise_and(depth_map, depth_map, mask = red_mask) contours, hierarchy = cv2.findContours(red_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for pic, contour in enumerate(contours): area = cv2.contourArea(contour) if(area > 18500): x, y, w, h = cv2.boundingRect(contour) depth_map = cv2.rectangle(depth_map, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.putText(imageFrame, "Red Colour", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255)) cv2.imshow("Obstacle Map", depth_map) if cv2.waitKey(5) & 0xFF == 27: break cap.release() I need to limit the number of rectangles formed so as to find the closest obstacle. Tried to limit the area of the rectangle formed, but soon realized 2 big obstacles would interfere and break such a solution.
How to check if a point is in an ellipse in python
How do I find a point within an angled ellipse in python? I wrote out the equation in a function and I am drawing a black picture with the ellipse in white and the point in blue. I am then calculating if the point is within the ellipse which it is showing up in the picture but the function is returning as false. What am I missing? Thanks! # Create a black image for ellipse ROI img = np.zeros((240, 320, 3), np.uint8) # ellipse ellipse_center_x = 160 ellipse_center_y = 120 ellipse_axis_x = 100 ellipse_axis_y = 20 ellipse_angle = -40 start_angle = 0 end_angle = 360 # detection point example xCenter = 135 yCenter = 135 def pointInEllipse(img, xp, yp, x, y, axis_x, axis_y, angle): # # WITH StackOverflow Answer Edits angle_rad = math.radians(angle) cosa = math.cos(angle_rad) sina = math.sin(angle_rad) # # Equation of point within angled ellipse a = (((cosa * (xp - x) + sina * (yp - y)) ** 2) / (axis_x**2)) b = (((sina * (xp - x) - cosa * (yp - y)) ** 2) / (axis_y**2)) result = a+b img = cv2.ellipse(img, (x, y), (axis_x, axis_y), angle, 0, 360, (255, 255, 255), 1) if result <= 1: img = cv2.circle(img, (xp, yp), 10, (255, 0, 0), -1) print(result) cv2.imwrite('/tmp/ellipse2.png', img) return True else: img = cv2.circle(img, (xp, yp), 10, (255, 0, 0), -1) print(result) cv2.imwrite('/tmp/ellipse2.png', img) return False print(pointInEllipse(img, xCenter, yCenter, ellipse_center_x, ellipse_center_y, ellipse_axis_x, ellipse_axis_y,ellipse_angle))
The cosa and sina values are wrong: math.sin and math.cos expect their arguments in radians (0 to 2π for a full circle), but you are passing an angle in degrees. To convert an angle from degrees to radians, use the math.radians function: angle_rad = math.radians(angle) cosa = math.cos(angle_rad) sina = math.sin(angle_rad)
OpenCV Python HoughLines Transformation get the rectangle points to crop the original image
Is there anyway to get the rectangle points from the HoughLines Transformation results and apply the crop point to original image to get the cropped image. I have copied the code form the documentation. The idea is to extract the document from an image. Below is the result from the HoughLines Transformation and I required the intersection point to crop the image. """ #file hough_lines.py #brief This program demonstrates line finding with the Hough transform """ import sys import math import cv2 as cv import numpy as np import matplotlib.pyplot as plt def main(argv=[]): default_file = "/Users/apple/Downloads/Unknown-4" filename = argv[0] if len(argv) > 0 else default_file # Loads an image src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_GRAYSCALE) # Check if image is loaded fine if src is None: print ('Error opening image!') print ('Usage: hough_lines.py [image_name -- default ' + default_file + '] \n') return -1 dst = cv.Canny(src, 50, 200, None, 3) # Copy edges to the images that will display the results in BGR cdst = cv.cvtColor(dst, cv.COLOR_GRAY2BGR) cdstP = np.copy(cdst) lines = cv.HoughLines(dst, 1, np.pi / 180, 150, None, 0, 0) if lines is not None: for i in range(0, len(lines)): rho = lines[i][0][0] theta = lines[i][0][1] a = math.cos(theta) b = math.sin(theta) x0 = a * rho y0 = b * rho pt1 = (int(x0 + 1000*(-b)), int(y0 + 1000*(a))) pt2 = (int(x0 - 1000*(-b)), int(y0 - 1000*(a))) cv.line(cdst, pt1, pt2, (0,0,255), 3, cv.LINE_AA) linesP = cv.HoughLinesP(dst, 1, np.pi / 180, 50, None, 50, 10) if linesP is not None: for i in range(0, len(linesP)): l = linesP[i][0] cv.line(cdstP, (l[0], l[1]), (l[2], l[3]), (0,0,255), 3, cv.LINE_AA) #cv.imshow("Source", src) #plt.imshow(src) plt.imshow(cdstP) #plt.imshow(cdstP) if __name__ == "__main__": main()
Delay in output video stream when using YOLOV3 Detection using OpenCV
This is my Code of Mask Detection using YOLOV3 weights created by me. Whenever I run my Program, I experience a delay in my output Video of detection. This is the code please have a look. import cv2 import numpy as np net = cv2.dnn.readNet("yolov3_custom_final.weights", "yolov3_custom.cfg") with open("obj.name", "r") as f: classes = f.read().splitlines() cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW) while True: ret, img = cap.read() height, weight, _ = img.shape blob = cv2.dnn.blobFromImage(img, 1 / 255, (416, 416), (0, 0, 0), swapRB=True, crop=False) net.setInput(blob) output = net.getUnconnectedOutLayersNames() layers = net.forward(output) box = [] confidences = [] class_ids = [] for out in layers: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.3: centre_x = int(detection[0] * weight) centre_y = int(detection[1] * height) w = int(detection[2] * weight) h = int(detection[3] * height) x = int(centre_x - w / 2) y = int(centre_y - h / 2) box.append([x, y, w, h]) confidences.append(float(confidence)) class_ids.append(class_id) indexes = np.array(cv2.dnn.NMSBoxes(box, confidences, 0.5, 0.4)) font = cv2.FONT_HERSHEY_PLAIN colors = np.random.uniform(0, 255, size=(len(box), 3)) for i in indexes.flatten(): x, y, w, h = box[i] label = str(classes[class_ids[i]]) confidence = str(round(confidences[i], 2)) color = colors[i] cv2.rectangle(img, (x, y), (x + w, y + h), color, 2) cv2.putText(img, label + "I" + confidence, (x, y + 20), font, 2, (255, 255, 255), 2) cv2.imshow("Final", img) if cv2.waitKey(1) & 0xff == ord("q"): break cap.release() cv2.destroyAllWindows() Can someone Please help me in this Issue or suggest a way to reduce the Lag in my Output videostream ?
As I have done some research over the Time, I have a found a Possible answer to this question. As I'm running my YOLO model in my local system which has no GPU, This is the factor that is causing a delay in the Output as it Processes a frame and takes another frame after completion.
Reading a Meter using OpenCV
I am trying to read values on my electricity meter LCD display using opencv, From my picture I am able to find meter using HoughCircles method, I am able to find LCD display on meter using contours, the lcd display isn't so clear so again I search for contours to extract digits from display. Now I am unable to read values on the display using tesseract or ssocr, how can i read the values on LCD display. I just started using opencv (Beginner), don't know the right way to go from here and if my approach is correct, would appreciate any help. Below is my code snippet and the meter images links are in comments. def process_image(path, index): img = cv2.imread(path) img = cv2.resize(img,(0,0),fx=2.0,fy=2.0) height, width, depth = img.shape print("\n---------------------------------------------\n") print("In Process Image Path is %s height is %d Width is %d depth is %d" %(path, height, width, depth)) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blur = cv2.medianBlur(gray, 15) circles = cv2.HoughCircles(blur, cv2.HOUGH_GRADIENT,1.2,100) # ensure at least one circles is found, which is our meter if circles is not None: circles = np.uint16(np.around(circles)) print("Meter Found") for i in circles[0]: CenterX = i[0] CenterY = i[1] Radius = i[2] circle_img = np.zeros((height, width), np.uint8) cv2.circle(circle_img, (CenterX, CenterY), Radius, 1, thickness=-1) masked_data = cv2.bitwise_and(img, img, mask=circle_img) output = masked_data.copy() cv2.circle(output, (i[0], i[1]), i[2], (0, 255, 0), 2) cv2.circle(output, (i[0], i[1]), 2, (0, 0, 255), 3) cv2.imwrite("output_" + str(index) + ".jpg", output) break gray = cv2.cvtColor(output, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray,(5,5),1) edged = cv2.Canny(blurred, 5,10,200) cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if imutils.is_cv2() else cnts[1] cnts = sorted(cnts, key=cv2.contourArea, reverse=True) displayCnt = None contour_list = [] # loop over the contours for c in cnts: # approximate the contour peri = 0.02 * cv2.arcLength(c, True) approx = cv2.approxPolyDP(c,peri, True) # if the contour has four vertices, then we have found # the meter display if len(approx) == 4: contour_list.append(c) cv2.contourArea(c) displayCnt = approx break warped = four_point_transform(gray, displayCnt.reshape(4, 2)) output = four_point_transform(output, displayCnt.reshape(4, 2)) thresh = cv2.adaptiveThreshold(warped, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 31, 2) cnts = cv2.findContours(thresh.copy(), cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if imutils.is_cv2() else cnts[1] digitCnts = [] # loop over the digit area candidates for c in cnts: # compute the bounding box of the contour (x, y, w, h) = cv2.boundingRect(c) # if the contour is sufficiently large, it must be a digit if (w > 5 and w < 100) and (h >= 15 and h <= 150) : digitCnts.append(c) # sort the contours from left-to-right, then initialize the # actual digits themselves digitCnts = contours.sort_contours(digitCnts,method="left-to-right")[0] mask = np.zeros(thresh.shape, np.uint8) cv2.drawContours(mask, digitCnts, -80, (255, 255, 255),-1) mask = cv2.bitwise_not(mask) mask = cv2.resize(mask, (0, 0), fx=2.0, fy=2.0) result = os.popen('/usr/local/bin/ssocr --number-digits=-1 -t 10 Mask.jpg') output = result.read() print("Output is " + output) output = output[2:8] return str(round(float(output) * 0.1, 1)) else: print("Circle not Found") print("\n---------------------------------------------\n") return None