How to create a time array in python for seasonal data - python-3.x

I am working with paleoclimate data (536-550 CE) in NetCDF format, which I imported with xarray. The time format is a bit strange:
import xarray as xr
ds_tas_01 = xr.open_dataset('ue536a01_temp2_seasmean.nc')
ds_tas_01['time']
<xarray.DataArray 'time' (time: 61)>
array([15360215.25, 15360430.75, 15360731.75, 15361031.75, 15370131.75,
15370430.75, 15370731.75, 15371031.75, 15380131.75, 15380430.75,
15380731.75, 15381031.75, 15390131.75, 15390430.75, 15390731.75,
15391031.75, 15400131.75, 15400430.75, 15400731.75, 15401031.75,
15410131.75, 15410430.75, 15410731.75, 15411031.75, 15420131.75,
15420430.75, 15420731.75, 15421031.75, 15430131.75, 15430430.75,
15430731.75, 15431031.75, 15440131.75, 15440430.75, 15440731.75,
15441031.75, 15450131.75, 15450430.75, 15450731.75, 15451031.75,
15460131.75, 15460430.75, 15460731.75, 15461031.75, 15470131.75,
15470430.75, 15470731.75, 15471031.75, 15480131.75, 15480430.75,
15480731.75, 15481031.75, 15490131.75, 15490430.75, 15490731.75,
15491031.75, 15500131.75, 15500430.75, 15500731.75, 15501031.75,
15501231.75])
Coordinates:
* time (time) float64 1.536e+07 1.536e+07 1.536e+07 ... 1.55e+07 1.55e+07
Attributes:
standard_name: time
bounds: time_bnds
units: day as %Y%m%d.%f
calendar: proleptic_gregorian
axis: T
So I want to make my own time array that I can use to plot the climate data. For monthly data I used:
import numpy as np
time = np.arange('0536-01-31', '0551-01-31', dtype='datetime64[M]')
which gives me an array with the years and months between those two dates.
now I grouped my data by season using cdo seasmean ('djf', 'mam', jja, 'son') and got 61 values instead of 180. Is there a way to regroup the 'time' array to seasonal values, or create a new time array that corresponds to the seasonal data?

I made it work by setting the number of steps in np.arange:
time = np.arange('0536-01-31', '0551-01-31', steps=3, dtype='datetime64[M]')
This gives a time step every three months, so essentially every 'season'.

Related

python3: Split time series by diurnal periods

I have the following dataset:
01/05/2020,00,26.3,27.5,26.3,80,81,73,22.5,22.7,22.0,993.7,993.7,993.0,0.0,178,1.2,-3.53,0.0
01/05/2020,01,26.1,26.8,26.1,79,80,75,22.2,22.4,21.9,994.4,994.4,993.7,1.1,22,2.0,-3.54,0.0
01/05/2020,02,25.4,26.1,25.4,80,81,79,21.6,22.3,21.6,994.7,994.7,994.4,0.1,335,2.3,-3.54,0.0
01/05/2020,03,23.3,25.4,23.3,90,90,80,21.6,21.8,21.5,994.7,994.8,994.6,0.9,263,1.5,-3.54,0.0
01/05/2020,04,22.9,24.2,22.9,89,90,86,21.0,22.1,21.0,994.2,994.7,994.2,0.3,268,2.0,-3.54,0.0
01/05/2020,05,22.8,23.1,22.8,90,91,89,21.0,21.4,20.9,993.6,994.2,993.6,0.7,264,1.5,-3.54,0.0
01/05/2020,06,22.2,22.8,22.2,92,92,90,20.9,21.2,20.8,993.6,993.6,993.4,0.8,272,1.6,-3.54,0.0
01/05/2020,07,22.6,22.6,22.0,91,93,91,21.0,21.2,20.7,993.4,993.6,993.4,0.4,284,2.3,-3.49,0.0
01/05/2020,08,21.6,22.6,21.5,92,92,90,20.2,20.9,20.1,993.8,993.8,993.4,0.4,197,2.1,-3.54,0.0
01/05/2020,09,22.0,22.1,21.5,92,93,92,20.7,20.8,20.2,994.3,994.3,993.7,0.0,125,2.1,-3.53,0.0
01/05/2020,10,22.7,22.7,21.9,91,92,91,21.2,21.2,20.5,995.0,995.0,994.3,0.0,354,0.0,70.99,0.0
01/05/2020,11,25.0,25.0,22.7,83,91,82,21.8,22.1,21.1,995.5,995.5,995.0,0.8,262,1.5,744.8,0.0
01/05/2020,12,27.9,28.1,24.9,72,83,70,22.3,22.8,21.6,996.1,996.1,995.5,0.7,228,1.9,1392.,0.0
01/05/2020,13,30.4,30.4,27.7,58,72,55,21.1,22.6,20.4,995.9,996.2,995.9,1.6,134,3.7,1910.,0.0
01/05/2020,14,31.7,32.3,30.1,50,58,48,20.2,21.3,19.7,995.8,996.1,995.8,3.0,114,5.4,2577.,0.0
01/05/2020,15,32.9,33.2,31.8,44,50,43,19.1,20.5,18.6,994.9,995.8,994.9,0.0,128,5.6,2853.,0.0
01/05/2020,16,33.2,34.4,32.0,46,48,41,20.0,20.0,18.2,994.0,994.9,994.0,0.0,125,4.3,2700.,0.0
01/05/2020,17,33.1,34.5,32.7,44,46,39,19.2,19.9,18.5,993.4,994.1,993.4,0.0,170,1.6,2806.,0.0
01/05/2020,18,33.6,34.2,32.6,41,47,40,18.5,20.0,18.3,992.6,993.4,992.6,0.0,149,0.0,2319.,0.0
01/05/2020,19,33.5,34.7,32.1,43,49,39,19.2,20.4,18.3,992.3,992.6,992.3,0.3,168,4.1,1907.,0.0
01/05/2020,20,32.1,33.9,32.1,49,51,41,20.2,20.7,18.5,992.4,992.4,992.3,0.1,192,3.7,1203.,0.0
01/05/2020,21,29.9,32.2,29.9,62,62,49,21.8,21.9,20.2,992.3,992.4,992.2,0.0,188,2.9,408.0,0.0
01/05/2020,22,28.5,29.9,28.4,67,67,62,21.8,22.0,21.7,992.5,992.5,992.3,0.4,181,2.3,6.817,0.0
01/05/2020,23,27.8,28.5,27.8,71,71,66,22.1,22.1,21.5,993.1,993.1,992.5,0.0,225,1.6,-3.39,0.0
02/05/2020,00,27.4,28.2,27.3,75,75,68,22.5,22.5,21.7,993.7,993.7,993.1,0.5,139,1.5,-3.54,0.0
02/05/2020,01,27.3,27.7,27.3,72,75,72,21.9,22.6,21.9,994.3,994.3,993.7,0.0,126,1.1,-3.54,0.0
02/05/2020,02,25.4,27.3,25.2,85,85,72,22.6,22.8,21.9,994.4,994.5,994.3,0.1,256,2.6,-3.54,0.0
02/05/2020,03,25.5,25.6,25.3,84,85,82,22.5,22.7,22.1,994.3,994.4,994.2,0.0,329,0.7,-3.54,0.0
02/05/2020,04,24.5,25.5,24.5,86,86,82,22.0,22.5,21.9,993.9,994.3,993.9,0.0,290,1.2,-3.54,0.0
02/05/2020,05,24.0,24.5,23.5,87,88,86,21.6,22.1,21.3,993.6,993.9,993.6,0.7,285,1.3,-3.54,0.0
02/05/2020,06,23.7,24.1,23.7,87,87,85,21.3,21.6,21.3,993.1,993.6,993.1,0.1,305,1.1,-3.51,0.0
02/05/2020,07,22.7,24.1,22.5,91,91,86,21.0,21.7,20.7,993.1,993.3,993.1,0.6,220,1.1,-3.54,0.0
02/05/2020,08,22.9,22.9,22.6,92,92,91,21.5,21.5,21.0,993.2,993.2,987.6,0.0,239,1.5,-3.53,0.0
02/05/2020,09,22.9,23.0,22.8,93,93,92,21.7,21.7,21.4,993.6,993.6,993.2,0.0,289,0.4,-3.53,0.0
02/05/2020,10,23.5,23.5,22.8,92,93,92,22.1,22.1,21.6,994.3,994.3,993.6,0.0,256,0.0,91.75,0.0
02/05/2020,11,26.1,26.2,23.5,80,92,80,22.4,23.1,22.2,995.0,995.0,994.3,1.1,141,1.9,789.0,0.0
02/05/2020,12,28.7,28.7,26.1,69,80,68,22.4,22.7,22.1,995.5,995.5,995.0,0.0,116,2.2,1468.,0.0
02/05/2020,13,31.4,31.4,28.6,56,69,56,21.6,22.9,21.0,995.5,995.7,995.4,0.0,65,0.0,1762.,0.0
02/05/2020,14,32.1,32.4,30.6,48,58,47,19.8,22.0,19.3,995.0,995.6,990.6,0.0,105,0.0,2657.,0.0
02/05/2020,15,34.0,34.2,31.7,43,48,42,19.6,20.1,18.6,993.9,995.0,993.9,3.0,71,6.0,2846.,0.0
02/05/2020,16,34.7,34.7,32.3,38,48,38,18.4,20.3,18.3,992.7,993.9,992.7,1.4,63,6.3,2959.,0.0
02/05/2020,17,34.0,34.7,32.7,42,46,38,19.2,20.0,18.4,991.7,992.7,991.7,2.2,103,4.8,2493.,0.0
02/05/2020,18,34.3,34.7,33.6,41,42,38,19.1,19.4,18.0,991.2,991.7,991.2,2.0,141,4.8,2593.,0.0
02/05/2020,19,33.5,34.5,32.5,42,47,39,18.7,20.0,18.4,990.7,991.4,989.9,1.8,132,4.2,1317.,0.0
02/05/2020,20,32.5,34.2,32.5,47,48,40,19.7,20.3,18.7,990.5,990.7,989.8,1.3,191,4.2,1250.,0.0
02/05/2020,21,30.5,32.5,30.5,59,59,47,21.5,21.6,20.0,979.8,990.5,979.5,0.1,157,2.9,345.5,0.0
02/05/2020,22,28.6,30.5,28.6,67,67,59,21.9,21.9,21.5,978.9,980.1,978.7,0.6,166,2.2,1.122,0.0
02/05/2020,23,27.2,28.7,27.2,74,74,66,22.1,22.2,21.6,978.9,979.3,978.6,0.0,246,1.7,-3.54,0.0
03/05/2020,00,26.5,27.2,26.0,77,80,74,22.2,22.5,22.0,979.0,979.1,978.7,0.0,179,1.4,-3.54,0.0
03/05/2020,01,26.0,26.6,26.0,80,80,77,22.4,22.5,22.1,979.1,992.4,978.7,0.0,276,0.6,-3.54,0.0
03/05/2020,02,26.0,26.5,26.0,79,81,75,22.1,22.5,21.7,978.8,979.1,978.5,0.0,290,0.6,-3.53,0.0
03/05/2020,03,25.3,26.0,25.3,83,83,79,22.2,22.4,21.8,978.6,989.4,978.5,0.5,303,1.0,-3.54,0.0
03/05/2020,04,25.3,25.6,24.6,81,85,81,21.9,22.5,21.7,978.1,992.7,977.9,0.7,288,1.5,-3.00,0.0
03/05/2020,05,23.7,25.3,23.7,88,88,81,21.5,21.9,21.5,977.6,991.8,977.3,1.2,256,1.8,-3.54,0.0
03/05/2020,06,23.3,23.7,23.3,91,91,88,21.7,21.7,21.5,976.9,977.6,976.7,0.4,245,1.8,-3.54,0.0
03/05/2020,07,23.0,23.6,23.0,91,91,89,21.4,21.9,21.3,976.7,977.0,976.4,0.9,257,1.9,-3.54,0.0
03/05/2020,08,23.4,23.4,22.9,90,92,90,21.7,21.7,21.3,976.8,976.9,976.5,0.4,294,1.6,-3.52,0.0
03/05/2020,09,23.0,23.5,23.0,88,90,87,21.0,21.6,20.9,992.1,992.1,976.7,0.8,263,1.6,-3.54,0.0
03/05/2020,10,23.2,23.2,22.5,91,92,88,21.6,21.6,20.8,993.0,993.0,992.2,0.1,226,1.5,29.03,0.0
03/05/2020,11,26.0,26.1,23.2,77,91,76,21.6,22.1,21.5,993.8,993.8,982.1,0.0,120,0.9,458.1,0.0
03/05/2020,12,26.6,27.0,25.5,76,80,76,22.1,22.5,21.4,982.7,994.3,982.6,0.3,121,2.3,765.3,0.0
03/05/2020,13,28.5,28.7,26.6,66,77,65,21.5,23.1,21.2,982.5,994.2,982.4,1.4,130,3.2,1219.,0.0
03/05/2020,14,31.1,31.1,28.5,55,66,53,21.0,21.8,19.9,982.3,982.7,982.1,1.2,129,3.7,1743.,0.0
03/05/2020,15,31.6,31.8,30.7,50,55,49,19.8,20.8,19.2,992.9,993.5,982.2,1.1,119,5.1,1958.,0.0
03/05/2020,16,32.7,32.8,31.1,46,52,46,19.6,20.7,19.2,991.9,992.9,991.9,0.8,122,4.4,1953.,0.0
03/05/2020,17,32.3,33.3,32.0,44,49,42,18.6,20.2,18.2,990.7,991.9,979.0,2.6,133,5.9,2463.,0.0
03/05/2020,18,33.1,33.3,31.9,44,50,44,19.3,20.8,18.9,989.9,990.7,989.9,1.1,170,5.4,2033.,0.0
03/05/2020,19,32.4,33.2,32.2,47,47,44,19.7,20.0,18.7,989.5,989.9,989.5,2.4,152,5.2,1581.,0.0
03/05/2020,20,31.2,32.5,31.2,53,53,46,20.6,20.7,19.4,989.5,989.7,989.5,1.7,159,4.6,968.6,0.0
03/05/2020,21,29.7,32.0,29.7,62,62,51,21.8,21.8,20.5,989.7,989.7,989.4,0.8,154,4.0,414.2,0.0
03/05/2020,22,28.3,29.7,28.3,69,69,62,22.1,22.1,21.7,989.9,989.9,989.7,0.3,174,2.0,6.459,0.0
03/05/2020,23,26.9,28.5,26.9,75,75,67,22.1,22.5,21.7,990.5,990.5,989.8,0.2,183,1.0,-3.54,0.0
The second column is time (hour). I want to separate the dataset by morning (06-11), afternoon (12-17), evening (18-23) and night (00-05). How I can do it?
You can use pd.cut:
bins = [-1,5,11,17,24]
labels = ['morning', 'afternoon', 'evening', 'night']
df['day_part'] = pd.cut(df['hour'], bins=bins, labels=labels)
I added column names, including Hour for the second column.
Then I used read_csv which reads the source text, "dropping" leading
zeroes, so that Hour column is just int.
To split rows (add a column marking the diurnal period), use:
df['period'] = pd.cut(df.Hour, bins=[0, 6, 12, 18, 24], right=False,
labels=['night', 'morning', 'afternoon', 'evening'])
Then you can e.g. use groupby to process your groups.
Because I used right=False parameter, the bins are closed on the left
side, thus bin limits are more natural (no need for -1 as an hour).
And bin limits (except for the last) are just starting hours of
each period - quite natural notation.

how to choose certain elements of a matrix to create a new one with np.array?

I have a matrix called "times" of form (1,517) where are the times of a whole day 24 hours (in seconds Epoch time) and I want to create a new matrix with the times of each half hour, that is, starting from the first time then the one that corresponds to half hour later and so on until completing all the half hours that there are in a day, that is, 48
I created a delta of time with
dt = timedelta (hours = 0.5)
dts = timedelta.total_seconds (dt)
but I do not know how to do to indicate that my new matrix takes those elements
print(times.shape)
Out[4]: (1, 517)
print(times)
array([[1.55079361e+09, 1.55079377e+09, 1.55079394e+09, 1.55079410e+09,
1.55079430e+09, 1.55079446e+09, 1.55079462e+09, 1.55079479e+09,
1.55079495e+09, 1.55079512e+09, 1.55079528e+09, 1.55079544e+09,
1.55079561e+09, 1.55079577e+09, 1.55079594e+09, 1.55079614e+09,
1.55079630e+09, 1.55079646e+09, 1.55079663e+09, 1.55079679e+09,
1.55079695e+09, 1.55079712e+09, 1.55079728e+09, 1.55079744e+09,
1.55079761e+09, 1.55079781e+09, 1.55079797e+09, 1.55079814e+09,
1.55079830e+09, 1.55079846e+09, 1.55079863e+09, 1.55079879e+09,
1.55079895e+09, 1.55079912e+09, 1.55079928e+09, 1.55079945e+09,
1.55079964e+09, 1.55079981e+09, 1.55079997e+09, 1.55080014e+09,
1.55080030e+09, 1.55080046e+09, 1.55080063e+09, 1.55080079e+09,
1.55080096e+09, 1.55080112e+09, 1.55080128e+09, 1.55080148e+09,
1.55080164e+09, 1.55080181e+09, 1.55080197e+09, 1.55080214e+09,
1.55080230e+09, 1.55080246e+09, 1.55080263e+09, 1.55080279e+09,
1.55080296e+09, 1.55080312e+09, 1.55080332e+09, 1.55080348e+09,
1.55080364e+09, 1.55080381e+09, 1.55080397e+09, 1.55080414e+09,
1.55080430e+09, 1.55080446e+09, 1.55080463e+09, 1.55080479e+09,
1.55080496e+09, 1.55080516e+09, 1.55080532e+09, 1.55080548e+09,
1.55080565e+09, 1.55080581e+09, 1.55080597e+09, 1.55080614e+09,
1.55080630e+09, 1.55080646e+09, 1.55080663e+09, 1.55080683e+09,
1.55080699e+09, 1.55080716e+09, 1.55080732e+09, 1.55080748e+09,
1.55080765e+09, 1.55080781e+09, 1.55080797e+09, 1.55080814e+09,
1.55080830e+09, 1.55080847e+09, 1.55080866e+09, 1.55080883e+09,
1.55080899e+09, 1.55080916e+09, 1.55080932e+09, 1.55080948e+09,
1.55080965e+09, 1.55080981e+09, 1.55080998e+09, 1.55081014e+09,
1.55081030e+09, 1.55081050e+09, 1.55081066e+09, 1.55081083e+09,
1.55081099e+09, 1.55081116e+09, 1.55081132e+09, 1.55081148e+09,
1.55081165e+09, 1.55081181e+09, 1.55081198e+09, 1.55081214e+09,
1.55081234e+09, 1.55081250e+09, 1.55081266e+09, 1.55081283e+09,
1.55081299e+09, 1.55081316e+09, 1.55081332e+09, 1.55081348e+09,
1.55081365e+09, 1.55081381e+09, 1.55081398e+09, 1.55081418e+09,
1.55081434e+09, 1.55081450e+09, 1.55081467e+09, 1.55081483e+09,
1.55081499e+09, 1.55081516e+09, 1.55081532e+09, 1.55081548e+09,
1.55081565e+09, 1.55081585e+09, 1.55081601e+09, 1.55081618e+09,
1.55081634e+09, 1.55081650e+09, 1.55081667e+09, 1.55081683e+09,
1.55081699e+09, 1.55081716e+09, 1.55081732e+09, 1.55081749e+09,
1.55081768e+09, 1.55081785e+09, 1.55081801e+09, 1.55081818e+09,
1.55081834e+09, 1.55081850e+09, 1.55081867e+09, 1.55081883e+09,
1.55081900e+09, 1.55081916e+09, 1.55081932e+09, 1.55081952e+09,
1.55081968e+09, 1.55081985e+09, 1.55082001e+09, 1.55082018e+09,
1.55082034e+09, 1.55082050e+09, 1.55082067e+09, 1.55082083e+09,
1.55082100e+09, 1.55082116e+09, 1.55082136e+09, 1.55082152e+09,
1.55082168e+09, 1.55082185e+09, 1.55082201e+09, 1.55082218e+09,
1.55082234e+09, 1.55082250e+09, 1.55082267e+09, 1.55082283e+09,
1.55082300e+09, 1.55082320e+09, 1.55082336e+09, 1.55082352e+09,
1.55082369e+09, 1.55082385e+09, 1.55082401e+09, 1.55082418e+09,
1.55082434e+09, 1.55082450e+09, 1.55082467e+09, 1.55082487e+09,
1.55082503e+09, 1.55082520e+09, 1.55082536e+09, 1.55082552e+09,
1.55082569e+09, 1.55082585e+09, 1.55082601e+09, 1.55082618e+09,
1.55082634e+09, 1.55082651e+09, 1.55082670e+09, 1.55082687e+09,
1.55082703e+09, 1.55082720e+09, 1.55082736e+09, 1.55082752e+09,
1.55082769e+09, 1.55082785e+09, 1.55082802e+09, 1.55082818e+09,
1.55082834e+09, 1.55082854e+09, 1.55082870e+09, 1.55082887e+09,
1.55082903e+09, 1.55082920e+09, 1.55082936e+09, 1.55082952e+09,
1.55082969e+09, 1.55082985e+09, 1.55083002e+09, 1.55083018e+09,
1.55083038e+09, 1.55083054e+09, 1.55083070e+09, 1.55083087e+09,
1.55083103e+09, 1.55083120e+09, 1.55083136e+09, 1.55083152e+09,
1.55083169e+09, 1.55083185e+09, 1.55083202e+09, 1.55083222e+09,
1.55083238e+09, 1.55083254e+09, 1.55083271e+09, 1.55083287e+09,
1.55083303e+09, 1.55083320e+09, 1.55083336e+09, 1.55083352e+09,
1.55083369e+09, 1.55083389e+09, 1.55083405e+09, 1.55083422e+09,
1.55083438e+09, 1.55083454e+09, 1.55083471e+09, 1.55083487e+09,
1.55083503e+09, 1.55083520e+09, 1.55083536e+09, 1.55083553e+09,
1.55083572e+09, 1.55083589e+09, 1.55083605e+09, 1.55083622e+09,
1.55083638e+09, 1.55083654e+09, 1.55083671e+09, 1.55083687e+09,
1.55083704e+09, 1.55083720e+09, 1.55083736e+09, 1.55083756e+09,
1.55083772e+09, 1.55083789e+09, 1.55083805e+09, 1.55083822e+09,
1.55083838e+09, 1.55083854e+09, 1.55083871e+09, 1.55083887e+09,
1.55083904e+09, 1.55083920e+09, 1.55083940e+09, 1.55083956e+09,
1.55083972e+09, 1.55083989e+09, 1.55084005e+09, 1.55084022e+09,
1.55084038e+09, 1.55084054e+09, 1.55084071e+09, 1.55084087e+09,
1.55084104e+09, 1.55084124e+09, 1.55084140e+09, 1.55084156e+09,
1.55084173e+09, 1.55084189e+09, 1.55084205e+09, 1.55084222e+09,
1.55084238e+09, 1.55084254e+09, 1.55084271e+09, 1.55084291e+09,
1.55084307e+09, 1.55084324e+09, 1.55084340e+09, 1.55084356e+09,
1.55084373e+09, 1.55084389e+09, 1.55084405e+09, 1.55084422e+09,
1.55084438e+09, 1.55084455e+09, 1.55084474e+09, 1.55084491e+09,
1.55084507e+09, 1.55084524e+09, 1.55084540e+09, 1.55084556e+09,
1.55084573e+09, 1.55084589e+09, 1.55084606e+09, 1.55084622e+09,
1.55084638e+09, 1.55084658e+09, 1.55084674e+09, 1.55084691e+09,
1.55084707e+09, 1.55084724e+09, 1.55084740e+09, 1.55084756e+09,
1.55084773e+09, 1.55084789e+09, 1.55084806e+09, 1.55084822e+09,
1.55084842e+09, 1.55084858e+09, 1.55084874e+09, 1.55084891e+09,
1.55084907e+09, 1.55084924e+09, 1.55084940e+09, 1.55084956e+09,
1.55084973e+09, 1.55084989e+09, 1.55085006e+09, 1.55085026e+09,
1.55085042e+09, 1.55085058e+09, 1.55085075e+09, 1.55085091e+09,
1.55085107e+09, 1.55085124e+09, 1.55085140e+09, 1.55085156e+09,
1.55085173e+09, 1.55085193e+09, 1.55085209e+09, 1.55085226e+09,
1.55085242e+09, 1.55085258e+09, 1.55085275e+09, 1.55085291e+09,
1.55085307e+09, 1.55085324e+09, 1.55085340e+09, 1.55085357e+09,
1.55085376e+09, 1.55085393e+09, 1.55085409e+09, 1.55085426e+09,
1.55085442e+09, 1.55085458e+09, 1.55085475e+09, 1.55085491e+09,
1.55085508e+09, 1.55085524e+09, 1.55085540e+09, 1.55085560e+09,
1.55085576e+09, 1.55085593e+09, 1.55085609e+09, 1.55085626e+09,
1.55085642e+09, 1.55085658e+09, 1.55085675e+09, 1.55085691e+09,
1.55085708e+09, 1.55085724e+09, 1.55085744e+09, 1.55085760e+09,
1.55085776e+09, 1.55085793e+09, 1.55085809e+09, 1.55085826e+09,
1.55085842e+09, 1.55085858e+09, 1.55085875e+09, 1.55085891e+09,
1.55085908e+09, 1.55085928e+09, 1.55085944e+09, 1.55085960e+09,
1.55085977e+09, 1.55085993e+09, 1.55086009e+09, 1.55086026e+09,
1.55086042e+09, 1.55086058e+09, 1.55086075e+09, 1.55086095e+09,
1.55086111e+09, 1.55086128e+09, 1.55086144e+09, 1.55086160e+09,
1.55086177e+09, 1.55086193e+09, 1.55086209e+09, 1.55086226e+09,
1.55086242e+09, 1.55086259e+09, 1.55086278e+09, 1.55086295e+09,
1.55086311e+09, 1.55086328e+09, 1.55086344e+09, 1.55086360e+09,
1.55086377e+09, 1.55086393e+09, 1.55086410e+09, 1.55086426e+09,
1.55086442e+09, 1.55086462e+09, 1.55086478e+09, 1.55086495e+09,
1.55086511e+09, 1.55086528e+09, 1.55086544e+09, 1.55086560e+09,
1.55086577e+09, 1.55086593e+09, 1.55086610e+09, 1.55086626e+09,
1.55086646e+09, 1.55086662e+09, 1.55086678e+09, 1.55086695e+09,
1.55086711e+09, 1.55086728e+09, 1.55086744e+09, 1.55086760e+09,
1.55086777e+09, 1.55086793e+09, 1.55086810e+09, 1.55086830e+09,
1.55086846e+09, 1.55086862e+09, 1.55086879e+09, 1.55086895e+09,
1.55086911e+09, 1.55086928e+09, 1.55086944e+09, 1.55086960e+09,
1.55086977e+09, 1.55086997e+09, 1.55087013e+09, 1.55087030e+09,
1.55087046e+09, 1.55087062e+09, 1.55087079e+09, 1.55087095e+09,
1.55087111e+09, 1.55087128e+09, 1.55087144e+09, 1.55087161e+09,
1.55087180e+09, 1.55087197e+09, 1.55087213e+09, 1.55087230e+09,
1.55087246e+09, 1.55087262e+09, 1.55087279e+09, 1.55087295e+09,
1.55087312e+09, 1.55087328e+09, 1.55087344e+09, 1.55087364e+09,
1.55087380e+09, 1.55087397e+09, 1.55087413e+09, 1.55087430e+09,
1.55087446e+09, 1.55087462e+09, 1.55087479e+09, 1.55087495e+09,
1.55087512e+09, 1.55087528e+09, 1.55087548e+09, 1.55087564e+09,
1.55087580e+09, 1.55087597e+09, 1.55087613e+09, 1.55087630e+09,
1.55087646e+09, 1.55087662e+09, 1.55087679e+09, 1.55087695e+09,
1.55087712e+09, 1.55087732e+09, 1.55087748e+09, 1.55087764e+09,
1.55087781e+09, 1.55087797e+09, 1.55087813e+09, 1.55087830e+09,
1.55087846e+09, 1.55087862e+09, 1.55087879e+09, 1.55087899e+09,
1.55087915e+09, 1.55087932e+09, 1.55087948e+09, 1.55087964e+09,
1.55087981e+09]])
First we create an array with a date range between the first and last entry of times
t = np.arange(np.datetime64(datetime.datetime.fromtimestamp(times[0,0])), np.datetime64(datetime.datetime.fromtimestamp(times[0,-1])), np.timedelta64(30, 'm'))
Output for t
array(['2019-02-22T01:00:10.000000', '2019-02-22T01:30:10.000000',
'2019-02-22T02:00:10.000000', '2019-02-22T02:30:10.000000',
'2019-02-22T03:00:10.000000', '2019-02-22T03:30:10.000000',
'2019-02-22T04:00:10.000000', '2019-02-22T04:30:10.000000',
'2019-02-22T05:00:10.000000', '2019-02-22T05:30:10.000000',
'2019-02-22T06:00:10.000000', '2019-02-22T06:30:10.000000',
'2019-02-22T07:00:10.000000', '2019-02-22T07:30:10.000000',
'2019-02-22T08:00:10.000000', '2019-02-22T08:30:10.000000',
'2019-02-22T09:00:10.000000', '2019-02-22T09:30:10.000000',
'2019-02-22T10:00:10.000000', '2019-02-22T10:30:10.000000',
'2019-02-22T11:00:10.000000', '2019-02-22T11:30:10.000000',
'2019-02-22T12:00:10.000000', '2019-02-22T12:30:10.000000',
'2019-02-22T13:00:10.000000', '2019-02-22T13:30:10.000000',
'2019-02-22T14:00:10.000000', '2019-02-22T14:30:10.000000',
'2019-02-22T15:00:10.000000', '2019-02-22T15:30:10.000000',
'2019-02-22T16:00:10.000000', '2019-02-22T16:30:10.000000',
'2019-02-22T17:00:10.000000', '2019-02-22T17:30:10.000000',
'2019-02-22T18:00:10.000000', '2019-02-22T18:30:10.000000',
'2019-02-22T19:00:10.000000', '2019-02-22T19:30:10.000000',
'2019-02-22T20:00:10.000000', '2019-02-22T20:30:10.000000',
'2019-02-22T21:00:10.000000', '2019-02-22T21:30:10.000000',
'2019-02-22T22:00:10.000000', '2019-02-22T22:30:10.000000',
'2019-02-22T23:00:10.000000', '2019-02-22T23:30:10.000000',
'2019-02-23T00:00:10.000000', '2019-02-23T00:30:10.000000'],
dtype='datetime64[us]')
Now, we want to calculate this back to seconds. To do this, we create a lambda function which does this for a single element of the array and use np.apply_along_axis to perform this operation element-wise on the array.
f = lambda x: (x - np.datetime64('1970-01-01T00:00:00Z'))/np.timedelta64(1,'s')
np.apply_along_axis(f, 0, t)
output
array([1.55079721e+09, 1.55079901e+09, 1.55080081e+09, 1.55080261e+09,
1.55080441e+09, 1.55080621e+09, 1.55080801e+09, 1.55080981e+09,
1.55081161e+09, 1.55081341e+09, 1.55081521e+09, 1.55081701e+09,
1.55081881e+09, 1.55082061e+09, 1.55082241e+09, 1.55082421e+09,
1.55082601e+09, 1.55082781e+09, 1.55082961e+09, 1.55083141e+09,
1.55083321e+09, 1.55083501e+09, 1.55083681e+09, 1.55083861e+09,
1.55084041e+09, 1.55084221e+09, 1.55084401e+09, 1.55084581e+09,
1.55084761e+09, 1.55084941e+09, 1.55085121e+09, 1.55085301e+09,
1.55085481e+09, 1.55085661e+09, 1.55085841e+09, 1.55086021e+09,
1.55086201e+09, 1.55086381e+09, 1.55086561e+09, 1.55086741e+09,
1.55086921e+09, 1.55087101e+09, 1.55087281e+09, 1.55087461e+09,
1.55087641e+09, 1.55087821e+09, 1.55088001e+09, 1.55088181e+09])

Obtaining hyperpolarization depth from electrophysiological graph

I am working on electrophysiological data which is in .abf format.
I want to obtain the hyperpolarization depth as indicated above in the figure. This is what I have done so far;
import matplotlib.pyplot as plt
import pyabf
import pandas as pd
abf = pyabf.ABF("test.abf")
abf.setSweep(10) # I can access a given sweep. Here sweep 10
df = pd.DataFrame({'time': abf.sweepX, 'current':abf.sweepY})
df1 = df.loc[15650:15800]
df1.plot(x='time', y='current')
I am thinking to apply change in derivative to find the first point of interest (x1,y1) and then lower point (x2,y2), but it looks complex. I would appreciate if someone give some hint or procedure.
The dataset as follow,
time current
0.7825 -63.323975
0.78255 -63.171387
0.7826 -62.89673
0.78265 -62.713623
0.7827 -62.469482
0.78275 -62.37793
0.7828 -62.10327
0.78285 -61.950684
0.7829 -61.76758
0.78295 -61.584473
0.783 -61.401367
0.78305 -61.24878
0.7831 -61.035156
0.78315 -60.85205
0.7832 -60.72998
0.78325 -60.516357
0.7833 -60.455322
0.78335 -60.2417
0.7834 -60.08911
0.78345 -59.96704
0.7835 -59.814453
0.78355 -59.661865
0.7836 -59.509277
0.78365 -59.417725
0.7837 -59.23462
0.78375 -59.11255
0.7838 -58.95996
0.78385 -58.86841
0.7839 -58.685303
0.78395 -58.59375
0.784 -58.441162
0.78405 -58.34961
0.7841 -58.19702
0.78415 -58.044434
0.7842 -57.922363
0.78425 -57.769775
0.7843 -57.678223
0.78435 -57.434082
0.7844 -57.34253
0.78445 -56.9458
0.7845 -56.274414
0.78455 -54.96216
0.7846 -53.253174
0.78465 -51.208496
0.7847 -48.950195
0.78475 -46.325684
0.7848 -43.09082
0.78485 -38.42163
0.7849 -31.036377
0.78495 -22.033691
0.785 -13.397217
0.78505 -6.072998
0.7851 -0.61035156
0.78515 2.7160645
0.7852 3.9367676
0.78525 3.4179688
0.7853 1.3427734
0.78535 -1.4953613
0.7854 -5.0964355
0.78545 -9.185791
0.7855 -13.641357
0.78555 -18.249512
0.7856 -23.132324
0.78565 -27.98462
0.7857 -32.714844
0.78575 -37.261963
0.7858 -41.47339
0.78585 -45.22705
0.7859 -48.553467
0.78595 -51.54419
0.786 -53.985596
0.78605 -56.18286
0.7861 -58.013916
0.78615 -59.539795
0.7862 -60.760498
0.78625 -61.88965
0.7863 -62.652588
0.78635 -63.323975
0.7864 -63.934326
0.78645 -64.2395
0.7865 -64.60571
0.78655 -64.78882
0.7866 -65.00244
0.78665 -64.971924
0.7867 -65.093994
0.78675 -65.03296
0.7868 -64.971924
0.78685 -64.819336
0.7869 -64.78882
0.78695 -64.66675
0.787 -64.48364
0.78705 -64.42261
0.7871 -64.2395
0.78715 -64.11743
0.7872 -63.964844
0.78725 -63.842773
0.7873 -63.659668
0.78735 -63.568115
0.7874 -63.446045
0.78745 -63.26294
0.7875 -63.171387
0.78755 -62.98828
0.7876 -62.89673
0.78765 -62.74414
0.7877 -62.713623
0.78775 -62.530518
0.7878 -62.438965
0.78785 -62.37793
0.7879 -62.25586
0.78795 -62.164307
0.788 -62.042236
0.78805 -62.01172
0.7881 -61.88965
0.78815 -61.88965
0.7882 -61.73706
0.78825 -61.706543
0.7883 -61.645508
0.78835 -61.61499
0.7884 -61.523438
0.78845 -61.462402
0.7885 -61.431885
0.78855 -61.340332
0.7886 -61.37085
0.78865 -61.279297
0.7887 -61.279297
0.78875 -61.157227
0.7888 -61.187744
0.78885 -61.09619
0.7889 -61.157227
0.78895 -61.12671
0.789 -61.09619
0.78905 -61.12671
0.7891 -61.00464
0.78915 -61.00464
0.7892 -60.97412
0.78925 -60.97412
0.7893 -60.943604
0.78935 -61.00464
0.7894 -60.913086
0.78945 -60.97412
0.7895 -60.943604
0.78955 -60.913086
0.7896 -60.943604
0.78965 -60.85205
0.7897 -60.85205
0.78975 -60.821533
0.7898 -60.88257
0.78985 -60.88257
0.7899 -60.913086
0.78995 -60.88257
0.79 -60.913086
We can plot the difference in current between consecutive points (which essentially is to a constant factor the derivative, since times are evenly spaced). First chart shows the actual diffs. Based on this we can set some threshold, such as 0.3, and apply it to filter the main DataFrame. The filtered values are shown in orange on the second chart:
fig, ax = plt.subplots(2, figsize=(8,8))
# plot derivative
df['current'].diff().plot(ax=ax[0])
# current
threshold = 0.4
df['filtered'] = df.loc[df['current'].diff().abs() > threshold]
df.plot(ax=ax[1])
# add spans
x = df['filtered'].dropna()
ax[1].axhspan(x.iloc[0], x.iloc[-1], alpha=0.3, edgecolor='skyblue', facecolor="none", hatch='////')
ax[1].axvspan(x.index.min(), x.index.max(), alpha=0.3, edgecolor='orange', facecolor="none", hatch='\\\\')
Output:
If you're interested in range values, you can dropna values in the filtered subset and find min and max from the index:
print('min', df['filtered'].dropna().index.min())
print('max', df['filtered'].dropna().index.max())
Output:
min 0.78445
max 0.7865
For the value of the gap you can use:
abs(df['filtered'].dropna().iloc[-1] - df['filtered'].dropna().iloc[0])
Output:
7.6599100000000035
Note: We can alternatively also get left edges of these spans as points where diff in the point is lower than the threshold and diff in the next point is higher than the threshold, and similarly for the right edges. This would also work in case we have multiple peaks:
threshold = 0.3
x = df['current'].diff().abs()
spanA = df.loc[(x < threshold) & (x.shift(-1) >= threshold)]
spanB = df.loc[(x >= threshold) & (x.shift(-1) < threshold)]
print(spanA)
current
time
0.7844 -57.34253
print(spanB)
current
time
0.7865 -64.60571

NCO netcdf4 operations - ncwa (Averaging)

I am having trouble trying to combine three files to be averaged. I am not so sure how to even start. I have three files
"nday1.06.nc , nday1.07.nc, nday.08.nc"
each with the variables
"filling on), ('SST', <class 'netCDF4._netCDF4.Variable'>
float32 SST(time, nlat, nlon)
long_name: Surface Potential Temperature
units: degC
coordinates: TLONG TLAT time
grid_loc: 2110
cell_methods: time: mean time: mean time: mean
_FillValue: 9.96921e+36
missing_value: 9.96921e+36
unlimited dimensions: time
current shape = (1, 2400, 3600)
I just need to average the SST variables and then an output file with the averages
You need ncra not ncwa
http://nco.sourceforge.net/nco.html#ncra
ncra nday1.06.nc nday1.07.nc nday.08.nc out.nc
Similarly, you could you use cdo, but you first need to merge the files:
cdo mergetime nday1.06.nc nday1.07.nc nday.08.nc mergedfile.nc
and then average:
cdo timmean mergedfile.nc out.nc

Resampling Time Series Data (Pandas Python 3)

Trying to convert data at daily frequency to weekly frequency.
In:
weeklyaaapl = pd.DataFrame()
weeklyaapl['Open'] = aapl.Open.resample('W').iloc[0]
#here I am trying to take the first value of the aapl.Open,
#that falls within the week.
Out:
ValueError: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
I want the true open (the first open that prints for the week) (the open of the first day in that week).
It instead wants me to take the mean of the daily open values for a given week using .mean(), which is not the information I need.
Can't seem to interpret the error, documentation isn't helping either.
I think you need.
aapl.resample('W').first()
Output:
Open High Low Close Volume
Date
2010-01-10 30.49 30.64 30.34 30.57 123432050
2010-01-17 30.40 30.43 29.78 30.02 115557365
2010-01-24 29.76 30.74 29.61 30.72 182501620
2010-01-31 28.93 29.24 28.60 29.01 266424802
2010-02-07 27.48 28.00 27.33 27.82 187468421

Resources