How to perform arithmetic operations with specific elements of a dataframe? - python-3.x

I am trying to understand how to perform arithmetic operations on a dataframe in python.
import pandas as pd
import numpy as np
df = pd.DataFrame({'col1':[2,38,7,5],'col2':[1,3,2,4]})
print (unsorted_df.sum())
This is what I'm getting (in terms of the output), but I want to have more control over which sum I am getting.
col1 52
col2 10
dtype: int64
Just wondering how I would add individual elements in the dataframe together.

Your question is not very clear but still I will try to cover all possible scenarios,
Input:
df
col1 col2
0 2 1
1 38 3
2 7 2
3 5 4
If you want the sum of columns,
df.sum(axis = 0)
Output:
col1 52
col2 10
dtype: int64
If you want the sum of rows,
df.sum(axis = 1)
0 3
1 41
2 9
3 9
dtype: int64
If you want to add a list of numbers into a column,
num = [1, 2, 3, 4]
df['col1'] = df['col1'] + num
df
Output:
col1 col2
0 3 1
1 40 3
2 10 2
3 9 4
If you want to add a list of numbers into a row,
num = [1, 2]
df.loc[0] = df.loc[0] + num
df
Output:
col1 col2
0 3 3
1 38 3
2 7 2
3 5 4
If you want to add a single number to a column,
df['col1'] = df['col1'] + 2
df
Output:
col1 col2
0 4 1
1 40 3
2 9 2
3 7 4
If you want to add a single number to a row,
df.loc[0] = df.loc[0] + 2
df
Output:
col1 col2
0 4 3
1 38 3
2 7 2
3 5 4
If you want to add a number to any number(an element of row i and column j),
df.iloc[1,1] = df.iloc[1,1] + 5
df
Output:
col1 col2
0 2 1
1 38 8
2 7 2
3 5 4

Related

Shuffle pandas columns

I have the following data frame:
Col1 Col2 Col3 Type
0 1 2 3 1
1 4 5 6 1
2 7 8 9 2
and I would like to have a shuffled output like :
Col3 Col1 Col2 Type
0 3 1 2 1
1 6 4 5 1
2 9 7 8 2
How to achieve this?
Use DataFrame.sample with axis=1:
df = df.sample(frac=1, axis=1)
If need last column not changed position:
a = df.columns[:-1].to_numpy()
np.random.shuffle(a)
print (a)
['Col3' 'Col1' 'Col2']
df = df[np.append(a, ['Type'])]
print (df)
Col2 Col3 Col1 Type
0 3 1 2 1
1 6 4 5 1
2 9 7 8 2

pandas fill column with random numbers with a total for each row

I've got a pandas dataframe like this:
id foo
0 A col1
1 A col2
2 B col1
3 B col3
4 D col4
5 C col2
I'd like to create four additional columns based on unique values in foo column. col1,col2, col3, col4
id foo col1 col2 col3 col4
0 A col1 75 20 5 0
1 A col2 20 80 0 0
2 B col1 82 10 8 0
3 B col3 5 4 80 11
4 D col4 0 5 10 85
5 C col2 12 78 5 5
The logic for creating the columns is as follows:
if foo = col1 then col1 contains a random number between 75-100 and the other columns (col2, col3, col4) contains random numbers, such that the total for each row is 100
I can manually create a new column and assign a random number, but I'm unsure how to include the logic of sum for each row of 100.
Appreciate any help!
My two cents
d=[]
s=np.random.randint(75,100,size=6)
for x in 100-s:
a=np.random.randint(100, size=3)
b=np.random.multinomial(x, a /a.sum())
d.append(b.tolist())
s=[np.random.choice(x,4,replace= False) for x in np.column_stack((s,np.array(d))) ]
df=pd.concat([df,pd.DataFrame(s,index=df.index)],1)
df
id foo 0 1 2 3
0 A col1 16 1 7 76
1 A col2 4 2 91 3
2 B col1 4 4 1 91
3 B col3 78 8 8 6
4 D col4 8 87 3 2
5 C col2 2 0 11 87
IIUC,
df['col1'] = df.apply(lambda x: np.where(x['foo'] == 'col1', np.random.randint(75,100), np.random.randint(0,100)), axis=1)
df['col2'] = df.apply(lambda x: np.random.randint(0,100-x['col1'],1)[0], axis=1)
df['col3'] = df.apply(lambda x: np.random.randint(0,100-x[['col1','col2']].sum(),1)[0], axis=1)
df['col4'] = 100 - df[['col1','col2','col3']].sum(1).astype(int)
df[['col1','col2','col3','col4']].sum(1)
Output:
id foo col1 col2 col3 col4
0 A col1 92 2 5 1
1 A col2 60 30 0 10
2 B col1 89 7 3 1
3 B col3 72 12 0 16
4 D col4 41 52 3 4
5 C col2 72 2 22 4
My Approach
import numpy as np
def weird(lower, upper, k, col, cols):
first_num = np.random.randint(lower, upper)
delta = upper - first_num
the_rest = np.random.rand(k - 1)
the_rest = the_rest / the_rest.sum() * (delta)
the_rest = the_rest.astype(int)
the_rest[-1] = delta - the_rest[:-1].sum()
key = lambda x: x != col
return dict(zip(sorted(cols, key=key), [first_num, *the_rest]))
def f(c): return weird(75, 100, 4, c, ['col1', 'col2', 'col3', 'col4'])
df.join(pd.DataFrame([*map(f, df.foo)]))
id foo col1 col2 col3 col4
0 A col1 76 2 21 1
1 A col2 11 76 11 2
2 B col1 75 4 10 11
3 B col3 0 1 97 2
4 D col4 5 4 13 78
5 C col2 9 77 6 8
If we subtract the numbers between 75-100 by 75, the problem become generating a table of random number between 0-25 whose each row sums to 25. That can be solve by reverse cumsum:
num_cols = 4
# generate random number and sort them in each row
a = np.sort(np.random.randint(0,25, (len(df), num_cols)), axis=1)
# create a dataframe and attach a last column with values 25
new_df = pd.DataFrame(a)
new_df[num_cols] = 25
# compute the difference, which are our numbers and add to the dummies:
dummies = pd.get_dummies(df.foo) * 75
dummies += new_df.diff(axis=1).fillna(new_df[0]).values
And dummies is
col1 col2 col3 col4
0 76.0 13.0 2.0 9.0
1 1.0 79.0 2.0 4.0
2 76.0 5.0 8.0 9.0
3 1.0 3.0 79.0 10.0
4 1.0 2.0 1.0 88.0
5 1.0 82.0 1.0 7.0
which can be concatenated to the original dataframe.

Fetch column value based on dynamic input

I have a dataframe, where in I have 1 column, which contains names of column satisfying certain conditions for each row.
It's like if columns of dataframe are Index, Col1, Col2, Col3, Col_Name. Where Col_Name has either Col1 or Col2 or Col3 for each row.
Now in a new column say Col_New, I want output for each row such as if 5th row Col_Name mentions Col_1, then value of Col_1 in 5th row.
I am sorry I cannot post the code I am working on, hence gave this hypothetical example.
Obliged for any help, thanks.
IIUC you could use:
df['col_new'] = df.reset_index().apply(lambda x: df.at[x['index'], x['col_name']], axis=1)
Example:
cols = ['Col1', 'Col2', 'Col3']
df = pd.DataFrame(np.random.rand(10, 3), columns=cols)
df['Col_Name'] = np.random.choice(cols, 10)
print(df)
Col1 Col2 Col3 Col_Name
0 0.833988 0.939254 0.256450 Col2
1 0.675909 0.609494 0.641944 Col3
2 0.877474 0.971299 0.218273 Col3
3 0.201189 0.265742 0.800580 Col2
4 0.397945 0.135153 0.941313 Col2
5 0.666252 0.697983 0.164768 Col2
6 0.863377 0.839421 0.601316 Col2
7 0.138975 0.731359 0.379258 Col3
8 0.412148 0.541033 0.197861 Col2
9 0.980040 0.506752 0.823274 Col3
df['Col_New'] = df.reset_index().apply(lambda x: df.at[x['index'], x['Col_Name']], axis=1)
[out]
Col1 Col2 Col3 Col_Name Col_New
0 0.833988 0.939254 0.256450 Col2 0.939254
1 0.675909 0.609494 0.641944 Col3 0.641944
2 0.877474 0.971299 0.218273 Col3 0.218273
3 0.201189 0.265742 0.800580 Col2 0.265742
4 0.397945 0.135153 0.941313 Col2 0.135153
5 0.666252 0.697983 0.164768 Col2 0.697983
6 0.863377 0.839421 0.601316 Col2 0.839421
7 0.138975 0.731359 0.379258 Col3 0.379258
8 0.412148 0.541033 0.197861 Col2 0.541033
9 0.980040 0.506752 0.823274 Col3 0.823274
Example 2 (based on integer col references)
cols = [1, 2, 3]
np.random.seed(0)
df = pd.DataFrame(np.random.rand(10, 3), columns=cols)
df[13] = np.random.choice(cols, 10)
print(df)
1 2 3 13
0 0.548814 0.715189 0.602763 3
1 0.544883 0.423655 0.645894 3
2 0.437587 0.891773 0.963663 1
3 0.383442 0.791725 0.528895 3
4 0.568045 0.925597 0.071036 1
5 0.087129 0.020218 0.832620 1
6 0.778157 0.870012 0.978618 1
7 0.799159 0.461479 0.780529 2
8 0.118274 0.639921 0.143353 2
9 0.944669 0.521848 0.414662 3
Instead use:
df['Col_New'] = df.reset_index().apply(lambda x: df.at[int(x['index']), int(x[13])], axis=1)
1 2 3 13 Col_New
0 0.548814 0.715189 0.602763 3 0.602763
1 0.544883 0.423655 0.645894 3 0.645894
2 0.437587 0.891773 0.963663 1 0.437587
3 0.383442 0.791725 0.528895 3 0.528895
4 0.568045 0.925597 0.071036 1 0.568045
5 0.087129 0.020218 0.832620 1 0.087129
6 0.778157 0.870012 0.978618 1 0.778157
7 0.799159 0.461479 0.780529 2 0.461479
8 0.118274 0.639921 0.143353 2 0.639921
9 0.944669 0.521848 0.414662 3 0.414662
Using the example DataFrame from Chris A.
You could do it like this:
cols = ['Col1', 'Col2', 'Col3']
df = pd.DataFrame(np.random.rand(10, 3), columns=cols)
df['Col_Name'] = np.random.choice(cols, 10)
print(df)
df['Col_New'] = [df.loc[df.index[i],j]for i,j in enumerate(df.Col_Name)]
print(df)
In pandas is for this function DataFrame.lookup, also it seems need same types of values in columns and looking column, so is possible convert both to strings:
np.random.seed(123)
cols = [1, 2, 3]
df = pd.DataFrame(np.random.randint(10, size=(5, 3)), columns=cols).rename(columns=str)
df['Col_Name'] = np.random.choice(cols, 5)
df['Col_New'] = df.lookup(df.index, df['Col_Name'].astype(str))
print(df)
1 2 3 Col_Name Col_New
0 2 2 6 3 6
1 1 3 9 2 3
2 6 1 0 1 6
3 1 9 0 1 1
4 0 9 3 1 0

How can I combine many dataframes in python?

I have many dataframes that I want to combine.
I only need 1 "level_0" column.
pd.concat([df_NB_E, df_LDA_E, df_DT_E, df_RF_E], axis=1)
it seems, that level_0 could be your index, right?
you have:
>>> level0 = ['ALL','AWA','REM','S1','S2','SWS']
>>> df1 = pd.DataFrame(data={'level_0':level0, 'col1':np.random.randint(0,9,6)})
>>> df2 = pd.DataFrame(data={'level_0':level0, 'col2':np.random.randint(0,9,6)})
>>> df3 = pd.DataFrame(data={'level_0':level0, 'col3':np.random.randint(0,9,6)})
>>> df1
col1 level_0
0 5 ALL
1 8 AWA
2 5 REM
3 3 S1
4 8 S2
5 4 SWS
>>> df2
col2 level_0
0 4 ALL
1 1 AWA
2 3 REM
3 2 S1
4 5 S2
5 1 SWS
>>> df3
col3 level_0
0 1 ALL
1 3 AWA
2 0 REM
3 4 S1
4 2 S2
5 3 SWS
>>> pd.concat([df1,df2,df3], axis=1)
col1 level_0 col2 level_0 col3 level_0
0 5 ALL 4 ALL 1 ALL
1 8 AWA 1 AWA 3 AWA
2 5 REM 3 REM 0 REM
3 3 S1 2 S1 4 S1
4 8 S2 5 S2 2 S2
5 4 SWS 1 SWS 3 SWS
you can set level_0 as your index, then concatenate:
>>> pd.concat([df1.set_index('level_0'), df2.set_index('level_0'), df3.set_index('level_0')], axis=1)
col1 col2 col3
level_0
ALL 5 4 1
AWA 8 1 3
REM 5 3 0
S1 3 2 4
S2 8 5 2
SWS 4 1 3
of if it's not an index, you can remove it before concat:
>>> pd.concat([df1.drop('level_0', axis=1), df2.drop('level_0', axis=1), df3.drop('level_0', axis=1)], axis=1)
col1 col2 col3
0 5 4 1
1 8 1 3
2 5 3 0
3 3 2 4
4 8 5 2
5 4 1 3
With these command I was able to delete all the columns with name "level_0"
df.drop(df.columns[[0]], axis=1, inplace=True)
df

How to sum columns in pandas and add the result into a new row?

In this code I want to sum each column and add it as a new row.
It does the sum but it does not show the new row.
df = pd.DataFrame(g, columns=('AWA', 'REM', 'S1', 'S2'))
df['xSujeto'] = df.sum(axis=1)
xEstado = df.sum(axis=0)
df.append(xEstado, ignore_index=True)
df
I think you can use loc:
df = pd.DataFrame({'AWA':[1,2,3],
'REM':[4,5,6],
'S1':[7,8,9],
'S2':[1,3,5]})
#add 1 to last index value
print (df.index[-1] + 1)
3
df.loc[df.index[-1] + 1] = df.sum()
print (df)
AWA REM S1 S2
0 1 4 7 1
1 2 5 8 3
2 3 6 9 5
3 6 15 24 9
Or append from comment of Nickil Maveli:
xEstado = df.sum()
df = df.append(xEstado, ignore_index=True)
print (df)
AWA REM S1 S2
0 1 4 7 1
1 2 5 8 3
2 3 6 9 5
3 6 15 24 9

Resources