I am trying to generate GROK patterns automatically using LogMine
Log sample:
Error IGXL error [Slot 2, Chan 16, Site 0] HSDMPI:0217 : TSC3 Fifo Edge EG0-7 Underflow. Please check the timing programming. Edge events should be fired in the sequence and the time between two edges should be more than 2 MOSC ticks.
Error IGXL error [Slot 2, Chan 18, Site 0] HSDMPI:0217 : TSC3 Fifo Edge EG0-7 Underflow. Please check the timing programming. Edge events should be fired in the sequence and the time between two edges should be more than 2 MOSC ticks.
For the above logs, I am getting the following pattern:
re.compile('^(?P<Event>.*?)\\s+(?P<Tester>.*?)\\s+(?P<State>.*?)\\s+(?P<Slot>.*?)\\s+(?P<Instrument>.*?)\\s+(?P<Content1>.*?):\\s+(?P<Content>.*?)$')
But I expect a Grok Pattern(Logstash) that looks like this:
%{LOGLEVEL:level} *%{DATA:Instrument} %{LOGLEVEL:State} \[%{DATA:slot} %{DATA:slot} %{DATA:channel} %{DATA:channel} %{DATA:Site}] %{DATA:Tester} : %{DATA:Content}
Code: LogMine is imported from the following link: https://github.com/logpai/logparser/tree/master/logparser/LogMine
import sys
import os
sys.path.append('../')
import LogMine
input_dir ='E:\LogMine\LogMine' # The input directory of log file
output_dir ='E:\LogMine\LogMine/output/' # The output directory of parsing results
log_file ='E:\LogMine\LogMine/log_teradyne.txt' # The input log file name
log_format ='<Event> <Tester> <State> <Slot> <Instrument><content> <contents> <context> <desc> <junk> ' # HDFS log format
levels =1 # The levels of hierarchy of patterns
max_dist =0.001 # The maximum distance between any log message in a cluster and the cluster representative
k =1 # The message distance weight (default: 1)
regex =[] # Regular expression list for optional preprocessing (default: [])
print(os.getcwd())
parser = LogMine.LogParser(input_dir, output_dir, log_format, rex=regex, levels=levels, max_dist=max_dist, k=k)
parser.parse(log_file)
This code returns only the parsed CSV file, I am looking to generate the GROK Patterns and use it later in a Logstash application to parse the logs.
Related
I'm studying AzureML RL with example codes.
I could run cartpole example (cartpole_ci.ipynb) which trains
the PPO model on compute instance.
I tried SAC instead of PPO by changing training_algorithm = "PPO" to training_algorithm = "SAC"
but it failed with the message below.
ray.rllib.utils.error.UnsupportedSpaceException: Action space Discrete(2) is not supported for SAC.
Has someone tried SAC algorithm on AzureML RL and did it work?
AzureML RL does support SAC Discrete Actions but not parametric and I have confirmed it in the doc - https://docs.ray.io/en/latest/rllib-algorithms.html#feature-compatibility-matrix
Are you following the code sample?
from azureml.contrib.train.rl import ReinforcementLearningEstimator, Ray
training_algorithm = "PPO" rl_environment = "CartPole-v0"
script_params = {
# Training algorithm
"--run": training_algorithm,
# Training environment
"--env": rl_environment,
# Algorithm-specific parameters
"--config": '\'{"num_gpus": 0, "num_workers": 1}\'',
# Stop conditions
"--stop": '\'{"episode_reward_mean": 200, "time_total_s": 300}\'',
# Frequency of taking checkpoints
"--checkpoint-freq": 2,
# If a checkpoint should be taken at the end - optional argument with no value
"--checkpoint-at-end": "",
# Log directory
"--local-dir": './logs' }
training_estimator = ReinforcementLearningEstimator(
# Location of source files
source_directory='files',
# Python script file
entry_script='cartpole_training.py',
# A dictionary of arguments to pass to the training script specified in ``entry_script``
script_params=script_params,
# The Azure Machine Learning compute target set up for Ray head nodes
compute_target=compute_target,
# Reinforcement learning framework. Currently must be Ray.
rl_framework=Ray() )
Is there any way to detect the highest peaks using a python library without setting any parameter?. I'm developing a user interface and I want the algorithm to be able to detect highest peaks automatically...
I want it to be able to detect these peaks in picture below:
graph here
Data looks like this:
8.60291e-07
-1.5491e-06
5.64568e-07
-9.51195e-07
1.07203e-06
4.6521e-07
6.43967e-07
-9.86092e-07
-9.82323e-07
6.38977e-07
-1.93884e-06
-2.98309e-08
1.33543e-06
1.05064e-06
1.17332e-06
-1.53549e-07
-8.9357e-07
1.59176e-06
-2.17331e-06
1.46756e-06
5.63301e-07
-8.77556e-07
7.47681e-09
-8.30101e-07
-3.6647e-07
5.27046e-07
-1.94983e-06
1.89018e-07
1.22533e-06
8.00735e-07
-8.51166e-07
1.13437e-06
-2.75787e-07
1.79601e-06
-1.67875e-06
1.13529e-06
-1.29865e-06
9.9688e-07
-9.34486e-07
8.89931e-07
-3.88634e-07
1.15124e-06
-4.23569e-07
-1.8029e-07
1.20537e-07
4.10736e-07
-9.99077e-07
-3.62984e-07
2.97916e-06
-1.95828e-06
-1.07398e-06
2.422e-06
-6.33202e-07
-1.36953e-06
1.6694e-06
-4.71764e-07
3.98849e-07
-1.0071e-06
-9.72984e-07
8.13553e-07
2.64193e-06
-3.12365e-06
1.34049e-06
-1.30419e-06
1.48369e-07
1.26033e-06
-2.59872e-07
4.28284e-07
-6.44356e-07
2.99934e-07
8.34335e-07
3.53226e-07
-7.08252e-07
4.1243e-07
2.41525e-06
-8.92159e-07
8.82339e-08
4.31945e-06
3.75152e-06
1.091e-06
3.8204e-06
-1.21356e-06
3.35564e-06
-1.06234e-06
-5.99808e-07
2.18155e-06
5.90652e-07
-1.36728e-06
-4.97017e-07
-7.77283e-08
8.68263e-07
4.37645e-07
-1.26514e-06
2.26413e-06
-8.52966e-07
-7.35596e-07
4.11911e-07
1.7585e-06
-inf
1.10779e-08
-1.49507e-06
9.87305e-07
-3.85296e-06
4.31265e-06
-9.89227e-07
-1.33537e-06
4.1713e-07
1.89362e-07
3.21968e-07
6.80237e-08
2.31636e-07
-2.98523e-07
7.99133e-07
7.36305e-07
6.39862e-07
-1.11932e-06
-1.57262e-06
1.86305e-06
-3.63716e-07
3.83865e-07
-5.23293e-07
1.31812e-06
-1.23608e-06
2.54684e-06
-3.99796e-06
2.90441e-06
-5.20203e-07
1.36295e-06
-1.89317e-06
1.22366e-06
-1.10373e-06
2.71276e-06
9.48181e-07
7.70881e-06
5.17066e-06
6.21254e-06
1.3513e-05
1.47878e-05
8.78543e-06
1.61819e-05
1.68438e-05
1.16082e-05
5.74059e-06
4.92458e-06
1.11884e-06
-1.07419e-06
-1.28517e-06
-2.70949e-06
1.65662e-06
1.42964e-06
3.40604e-06
-5.82825e-07
1.98288e-06
1.42819e-06
1.65517e-06
4.42749e-07
-1.95609e-06
-2.1756e-07
1.69164e-06
8.7204e-08
-5.35324e-07
7.43546e-07
-1.08687e-06
2.07289e-06
2.18529e-06
-2.8161e-06
1.88821e-06
4.07272e-07
1.063e-06
8.47244e-07
1.53879e-06
-9.0799e-07
-1.26709e-07
2.40044e-06
-9.48166e-07
1.41788e-06
3.67615e-07
-1.29199e-06
3.868e-06
9.54654e-06
2.51951e-05
2.2769e-05
7.21716e-06
1.36545e-06
-1.32681e-06
-3.09641e-06
4.90417e-07
2.99335e-06
1.578e-06
6.0025e-07
2.90656e-06
-2.08258e-06
-1.54214e-06
2.19757e-07
3.74982e-06
-1.76944e-06
2.15018e-06
-1.01935e-06
4.37469e-07
1.39078e-06
6.39587e-07
-1.7807e-06
-6.16455e-09
1.61557e-06
1.59644e-06
-2.35217e-06
5.29449e-07
1.9169e-06
-7.54822e-07
2.00342e-06
-3.28452e-06
3.91663e-06
1.66016e-08
-2.65897e-06
-1.4064e-06
4.67987e-07
1.67786e-06
4.69543e-07
-8.90106e-07
-1.4584e-06
1.37915e-06
1.98483e-06
-2.3735e-06
4.45618e-07
1.91504e-06
1.09653e-06
-8.00873e-07
1.32321e-06
2.04846e-06
-1.50656e-06
7.23816e-07
2.06049e-06
-2.43918e-06
1.64417e-06
2.65411e-07
-2.66107e-06
-8.01788e-07
2.05121e-06
-1.74988e-06
1.83594e-06
-8.14026e-07
-2.69342e-06
1.81152e-06
1.11664e-07
-4.21863e-06
-7.20551e-06
-5.92407e-07
-1.44629e-06
-2.08136e-06
2.86105e-06
3.77911e-06
-1.91898e-06
1.41742e-06
2.67914e-07
-8.55835e-07
-9.8584e-07
-2.74115e-06
3.39044e-06
1.39639e-06
-2.4964e-06
8.2486e-07
2.02432e-06
1.65793e-06
-1.43094e-06
-3.36807e-06
-8.96515e-07
5.31323e-06
-8.27209e-07
-1.39221e-06
-3.3754e-06
2.12372e-06
3.08218e-06
-1.42947e-06
-2.36777e-06
3.86218e-06
2.29327e-06
-3.3941e-06
-1.67291e-06
2.63828e-06
2.21008e-07
7.07794e-07
1.8172e-06
-2.00082e-06
1.80664e-06
6.69739e-07
-3.95395e-06
1.92148e-06
-1.07187e-06
-4.04938e-07
-1.76553e-06
2.7099e-06
1.30768e-06
1.41812e-06
-1.55518e-07
-3.78302e-06
4.00137e-06
-8.38623e-07
4.54651e-07
1.00027e-06
1.32196e-06
-2.62717e-06
1.67865e-06
-6.99249e-07
2.8837e-06
-1.00516e-06
-3.68011e-06
1.61847e-06
1.90887e-06
1.59641e-06
4.16779e-07
-1.35245e-06
1.65717e-06
-2.92667e-06
3.6203e-07
2.53528e-06
-2.0578e-07
-3.41919e-07
-1.42154e-06
-2.33322e-06
3.07175e-06
-2.69165e-08
-8.21045e-07
2.3175e-06
-7.22992e-07
1.49069e-06
8.75488e-07
-2.02676e-06
-2.81158e-07
3.6004e-06
-3.94708e-06
4.72983e-06
-1.38873e-06
-6.92139e-08
-1.4678e-06
1.04251e-06
-2.06625e-06
3.10406e-06
-8.13873e-07
7.23694e-07
-9.78912e-07
-8.65967e-07
7.37335e-07
1.52563e-06
-2.33591e-06
1.78265e-06
9.58435e-07
-5.22064e-07
-2.29736e-07
-4.26996e-06
-6.61411e-06
1.14789e-06
-4.32697e-06
-5.32779e-06
2.12241e-06
-1.40726e-06
1.76086e-07
-3.77194e-06
-2.71326e-06
-9.49402e-08
1.70807e-07
-2.495e-06
4.22324e-06
-3.62476e-06
-9.56055e-07
7.16583e-07
3.01447e-06
-1.41229e-06
-1.67694e-06
7.61627e-07
3.55881e-06
2.31015e-06
-9.50378e-07
4.45251e-08
-1.94791e-06
2.27081e-06
-3.34717e-06
3.05688e-06
4.57062e-07
3.87326e-06
-2.39215e-06
-3.52682e-06
-2.05212e-06
5.26495e-06
-3.28613e-07
-5.76569e-07
-7.46338e-07
5.98795e-06
8.80493e-07
-4.82965e-06
2.56839e-06
-1.58792e-06
-2.2294e-06
1.83841e-06
2.65482e-06
-3.10474e-06
-3.46741e-07
2.45557e-06
2.01328e-06
-3.92606e-06
inf
-8.11737e-07
5.72174e-07
1.57245e-06
8.02612e-09
-2.901e-06
1.22079e-06
-6.31714e-07
3.06241e-06
1.20059e-06
-1.80344e-06
4.90784e-07
3.74243e-06
-2.94342e-07
-3.45764e-08
-3.42099e-06
-1.43695e-06
5.91064e-07
3.47308e-06
3.78232e-06
4.01093e-07
-1.58435e-06
-3.47375e-06
1.34943e-06
1.11768e-06
1.95212e-06
-8.28033e-07
1.53705e-06
6.38031e-07
-1.84702e-06
1.34689e-06
-6.98669e-07
1.81653e-06
-2.42355e-06
-1.35257e-06
3.04367e-06
-1.21976e-06
1.61896e-06
-2.69528e-06
1.84601e-06
6.45447e-08
-4.94263e-07
3.47568e-06
-2.00531e-06
3.56693e-06
-3.19446e-06
2.72141e-06
-1.39059e-06
2.20032e-06
-1.76819e-06
2.32727e-07
-3.47382e-07
2.11823e-07
-5.22614e-07
2.69846e-06
-1.47983e-06
2.14554e-06
-6.27594e-07
-8.8501e-10
7.89124e-07
-2.8653e-07
8.30902e-07
-2.12857e-06
-1.90887e-07
1.07593e-06
1.40781e-06
2.41641e-06
-4.52689e-06
2.37207e-06
-2.19479e-06
1.65131e-06
1.2706e-06
-2.18387e-06
-1.72821e-07
5.41687e-07
7.2879e-07
7.56927e-07
1.57739e-06
-3.79395e-07
-1.02887e-06
-1.20987e-06
1.43066e-06
8.96301e-08
5.09766e-07
-2.8812e-06
-2.35944e-06
2.25912e-06
-2.78967e-06
-4.69913e-06
1.60822e-06
6.9342e-07
4.6225e-07
-1.33276e-06
-3.59033e-06
1.11206e-06
1.83521e-06
2.39163e-06
2.3468e-08
5.91431e-07
-8.80249e-07
-2.77405e-08
-1.13184e-06
-1.28036e-06
1.66229e-06
2.81784e-06
-2.97589e-06
8.73413e-08
1.06439e-06
2.39075e-06
-2.76974e-06
1.20862e-06
-5.12817e-07
-5.19104e-07
4.51324e-07
-4.7168e-07
2.35608e-06
5.46906e-07
-1.66748e-06
5.85236e-07
6.42944e-07
2.43164e-07
4.01031e-07
-1.93646e-06
2.07416e-06
-1.16116e-06
4.27155e-07
5.2951e-07
9.09149e-07
-8.71887e-08
-1.5564e-09
1.07266e-06
-9.49402e-08
2.04016e-06
-6.38123e-07
-1.94241e-06
-5.17294e-06
-2.18622e-06
-8.26703e-06
2.54364e-06
4.32614e-06
8.3847e-07
-2.85309e-06
2.72345e-06
-3.42752e-06
-1.36871e-07
2.23346e-06
5.26825e-07
1.3566e-06
-2.17111e-06
2.1463e-07
2.06479e-06
1.76929e-06
-1.2655e-06
-1.3797e-06
3.10706e-06
-4.72189e-06
4.38138e-06
6.41815e-07
-3.25623e-08
-4.93707e-06
5.05743e-06
5.17578e-07
-5.30524e-06
3.62463e-06
5.68909e-07
1.16226e-06
1.10843e-06
-5.00854e-07
9.48761e-07
-2.18701e-06
-3.57635e-07
4.26709e-06
-1.50836e-06
-5.84412e-06
3.5054e-06
3.94019e-06
-4.7623e-06
2.05856e-06
-2.22992e-07
1.64969e-06
2.64694e-06
-8.49487e-07
-3.63562e-06
1.0386e-06
1.69461e-06
-2.05798e-06
3.60349e-06
3.42651e-07
-1.46686e-06
1.19949e-06
-1.60519e-06
2.37793e-07
6.12366e-07
-1.54669e-06
1.43668e-06
1.87009e-06
-2.22626e-06
2.15155e-06
-3.10571e-06
2.05188e-06
-4.40002e-07
2.06683e-06
-1.11362e-06
5.96924e-07
-2.64471e-06
2.4892e-06
1.13083e-06
-3.23181e-07
5.10651e-07
2.73499e-07
-1.24899e-06
1.40564e-06
-9.3158e-07
1.45947e-06
3.70544e-07
-1.62628e-06
-1.70215e-06
1.72098e-06
8.19031e-07
-5.57709e-07
1.10107e-06
-2.81845e-06
1.57654e-07
3.30716e-06
-9.75403e-07
1.73126e-07
1.30447e-06
7.64771e-08
-6.65344e-07
-1.4346e-06
5.03171e-06
-2.84576e-06
2.3212e-06
-2.73373e-06
2.16675e-08
2.24026e-06
-4.11682e-08
-3.36642e-06
1.78775e-06
1.28174e-08
-9.32068e-07
2.97177e-06
-1.05338e-06
9.42505e-07
2.02362e-07
-1.81326e-06
2.16995e-06
2.83722e-07
-1.2648e-06
9.21814e-07
-8.9447e-07
-1.61597e-06
3.5036e-06
-6.79626e-08
1.52823e-06
-2.98682e-06
5.57404e-07
9.5166e-07
7.10419e-07
-1.28528e-06
-3.76038e-07
-1.03845e-06
2.96631e-06
-1.18356e-06
-2.77313e-07
3.24149e-06
-1.85455e-06
-1.27747e-07
3.6264e-07
4.66431e-07
-1.54443e-06
1.38437e-06
-1.53119e-06
7.4231e-07
-1.2388e-06
1.99774e-06
1.15799e-06
1.39478e-06
-2.93527e-06
-2.03012e-06
2.46667e-06
2.16751e-06
-2.50354e-06
3.95905e-07
5.74371e-07
1.33575e-07
-3.98315e-07
4.93927e-07
-5.23987e-07
-1.74713e-07
6.49384e-07
-7.16766e-07
2.35733e-06
-4.91333e-08
-1.88138e-06
1.74722e-06
4.03503e-07
3.5965e-07
1.44836e-07]
The task you are describing could be treated like anomaly/outlier detection.
One possible solution is to use a Z-score transformation and treat every value with a z score above a certain threshold as an outlier. Because there is no clear definition of an outlier it won't be able to detect such peaks without setting any parameters (threshold).
One possible solution could be:
import numpy as np
def detect_outliers(data):
outliers = []
d_mean = np.mean(data)
d_std = np.std(data)
threshold = 3 # this defines what you would consider a peak (outlier)
for point in data:
z_score = (point - d_mean)/d_std
if np.abs(z_score) > threshold:
outliers.append(point)
return outliers
# create normal data
data = np.random.normal(size=100)
# create outliers
outliers = np.random.normal(100, size=3)
# combine normal data and outliers
full_data = data.tolist() + outliers.tolist()
# print outliers
print(detect_outliers(full_data))
If you only want to detect peaks, remove the np.abs function call from the code.
This code snippet is based on a Medium Post, which also provides another way of detecting outliers.
I need to compose a simple rmarkdown file, with text, code and the results of executed code included in a resulting PDF file. I would prefer if the source file is executable and self sifficient, voiding the need for a makefile.
This is the best I have been able to achieve, and it is far from good:
#!/usr/bin/env Rscript
library(knitr)
pandoc('hw_ch4.rmd', format='latex')
# TODO: how to NOT print the above commands to the resulting .pdf?
# TODO: how to avoid putting everyting from here on in ""s?
# TODO: how to avoid mentioning the file name above?
# TODO: how to render special symbols, such as tilde, miu, sigma?
# Unicode character (U+3BC) not set up for use with LaTeX.
# See the inputenc package documentation for explanation.
# nano hw_ch4.rmd && ./hw_ch4.rmd && evince hw_ch4.pdf
"
4E1. In the model definition below, which line is the likelihood?
A: y_i is the likelihood, based on the expectation and deviation.
4M1. For the model definition below, simulate observed heights from the prior (not the posterior).
A:
```{r}
points <- 10
rnorm(points, mean=rnorm(points, 0, 10), sd=runif(points, 0, 10))
```
4M3. Translate the map model formula below into a mathematical model definition.
A:
```{r}
flist <- alist(
y tilda dnorm( mu , sigma ),
miu tilda dnorm( 0 , 10 ),
sigma tilda dunif( 0 , 10 )
)
```
"
Result:
What I eventually came to use is the following header. At first it sounded neat, but later I realized
+ is indeed easy to compile in one step
- this is code duplication
- mixing executable script and presentation data in one file is a security risk.
Code:
#!/usr/bin/env Rscript
#<!---
library(rmarkdown)
argv <- commandArgs(trailingOnly=FALSE)
fname <- sub("--file=", "", argv[grep("--file=", argv)])
render(fname, output_format="pdf_document")
quit(status=0)
#-->
---
title:
author:
date: "compiled on: `r Sys.time()`"
---
The quit() line is supposed to guarantee that the rest of the file is treated as data. The <!--- and --> comments are to render the executable code as comments in the data interpretation. They are, in turn, hidden by the #s from the shell.
What command would give me the output I need for each instance of an error code in a very large log file? The file has records marked by a begin and end with number of characters. Such as:
SR 120
1414760452 0 1 Fri Oct 31 13:00:52 2014 2218714 4
GROVEMR2 scn
../SrxParamIF.m 284
New Exam Started
EN 120
The 5th field is the error code, 2218714 in previous example.
I thought of just grep'ing for the error code and outputting -A lines afterwards; then picking what I needed from that rather than parsing the entire file. That seems easy but my grep/awk/sed usage isn't to that level.
ONLY when error 2274021 is encountered as in the following example I'd like some output as shown.
Show me output such as: egrep ‘Coil:|Connector:|Channels faulted:| First channel:’ ERRORLOG|less
Part of input file of interest:
Mon Nov 24 13:43:37 2014 2274021 1
AWHMRGE3T NSP
SCP:RfHubCanHWO::RfBias 4101
^MException Class: Unknown Severity: Unknown
Function: RF: RF Bias
PSD: VIBRANT Coil: Breast SMI Scan: 1106/14
Coil Fault - Short Circuit
A multicoil bias fault was detected.
.
Connector: Port 1 (P1)
Channels faulted: 0x200
First channel: 10 of 32, counting from 1
Fault value: -2499 mV, Channel: 10->
Output:
Coil: Breast SMI
Connector: Port 1 (P1)
Channels faulted: 0x200
First channel: 10 of 32, counting from 1
Thanks in advance for any pointers!
Try the following (with the convenient adaptations)
#!/usr/bin/perl
use strict;
$/="\nEN "; # register separated by "\nEN "
my $error=2274021; # the error!
while(<>){ # for all registers
next unless /\b$error\b/; # ignore unless error
for my $line ( split(/\n/,$_)){
print "$line\n" if ($line =~ /Coil:|Connector:|Channels faulted:|First channel:/);
}
print "====\n"
}
Is this what you need?
We have logs that log an event to a single file. Each log entry looks something like this:
<LogEntry>
<UserName>IIS APPPOOL\ASP.NET v4.0</UserName>
<TimeStamp>02/28/2014 13:54:17</TimeStamp>
<ThreadName>20</ThreadName>
<CorrelationId>7a0d464d-556c-4d47-820f-0cf01322e54c</CorrelationId>
<LoggerName>-Api-booking</LoggerName>
<Level>INFO</Level>
<Identity></Identity>
<Domain>API-1-130380690118132000</Domain>
<CreatedOn>02/28/2014 13:54:22</CreatedOn>
<ExceptionObject />
<RenderedMessage>"7a0d464d-556c-4d47-820f-0cf01322e54c" - "GET https://myapi.com/booking" - API-"Response":
"Unauthorized"</RenderedMessage>
</LogEntry>
When we import these logs into Splunk, the log entry is split up incorrectly into 3 parts e.g.
1-
<LogEntry>
<UserName>IIS APPPOOL\ASP.NET v4.0</UserName>
2-
<CreatedOn>02/28/2014 02:57:55</CreatedOn>
<ExceptionObject />
<RenderedMessage>"66d8cdda-ff62-480a-b7d2-ec175b151e5f" - "POST https://myapi.com/booking" - API-"Response":
"Bad Request"</RenderedMessage>
</LogEntry>
3-
<TimeStamp>02/28/2014 02:57:29</TimeStamp>
<ThreadName>21</ThreadName>
<CorrelationId>66d8cdda-ff62-480a-b7d2-ec175b151e5f</CorrelationId>
<LoggerName>-Api-booking</LoggerName>
<Level>INFO</Level>
<Identity></Identity>
<Domain>/LM/W3SVC/1/ROOT/Api-1-130380256918440000</Domain>
How can I configure Splunk to see these as a single log event?
props.conf (pay attention to LINE_BREAKER)
[your_xml_sourcetype]
TIME_PREFIX = <TimeStamp>
MAX_TIMESTAMP_LOOKAHEAD = 19
TZ = GMT
# A performance tweak is to disable SHOULD_LINEMERGE and then set the
# LINE_BREAKER to "line ending characters coming before a new time stamp"
# (note the direct link of the TIME_FORMAT to the regex of LINE_BREAKER).
TIME_FORMAT = %m/%d/%Y %T
LINE_BREAKER = ([\r\n]+)<LogEntry>
SHOULD_LINEMERGE = False
# 10000 is default, should be set on a case by case basis
TRUNCATE = 5000
# If the data does not have nice key=value pairs, (or some other readily
# machine parseable format, like JSON or XML), set KV_MODE = none so that
# Splunk doesn't spin its wheels on attempting to look for key = value
# pairs which don't exist.
KV_MODE = xml
# Leaving PUNCT enabled can impact indexing performance. Customers can
# comment this line if they need to use PUNCT
ANNOTATE_PUNCT = false
More information here: http://docs.splunk.com/Documentation/Splunk/latest/Admin/Propsconf