Best models to build Image recommendation System in python deep learning - python-3.x

I have explored about techniques to build Image Recommendation system with Deep Learning models, which it has to search in 100k images to find the top similar ones for recommendation on the given input image, I need the simple, best and reliable implementation references.
I tried with VGG-19 model didn't get expected results, not aware of other techniques.

There is a simpler method , which is similar to word embeddings. If we find an expressive vector representation, or embedding for images, we can then calculate their similarity by looking at how close their vectors are to each other.
In addition, if we calculate these vectors for all images in our database ahead of time, this approach is both fast (one forward pass, and an efficient similarity search), and scalable.
Annoy is one of the libraries that implement fast solutions.

Related

how can I simplify BoWs?

I'm trying to apply some binary text classification but I don't feel that having millions of >1k length vectors is a good idea. So, which alternatives are there for the basic BOW model?
I think there are quite a few different approaches, based on what exactly you are aiming for in your prediction task (processing speed over accuracy, variance in your text data distribution, etc.).
Without any further information on your current implementation, I think the following avenues offer ways for improvement in your approach:
Using sparse data representations. This might be a very obvious point, but choosing the right data structure to represent your input vectors can already save you a great deal of pain. Sklearn offers a variety of options, and detail them in their great user guide. Specifically, I would point out that you could either use scipy.sparse matrices, or alternatively represent something with sklearn's DictVectorizer.
Limit your vocabulary. There might be some words that you can easily ignore when building your BoW representation. I'm again assuming that you're working with some implementation similar to sklearn's CountVectorizer, which already offers a great number of possibilities. The most obvious option are stopwords, which can simply be dropped from your vocabulary entirely, but of course you can also limit it further by using pre-processing steps such as lemmatization/stemming, lowercasing, etc. CountVectorizer specifically also allows you to control the minimum and maximum document frequency (don't confuse this with corpus frequency), which again should limit the size of your vocabulary.

Best for resume, document matching

I have used three different ways to calculate the matching between the resume and the job description. Can anyone tell me that what method is the best and why?
I used NLTK for keyword extraction and then RAKE for
keywords/keyphrase scoring, then I applied cosine similarity.
Scikit for keywords extraction, tf-idf and cosine similarity
calculation.
Gensim library with LSA/LSI model to extract keywords and calculate
cosine similarity between documents and query.
Nobody here can give you the answer. The only way to decide which method works better is to have one or more humans independently match lots and lots of resumes and job descriptions, and compare what they do to what your algorithms do. Ideally you'd have a dataset of already matched resumes and job descriptions (companies must do this kind of thing when people apply), because it takes a lot of work to create a sufficiently large dataset.
Next time you take on this kind of project, start by considering how you are going to evaluate the performance of the solution you'll put together.
As already mentioned in answers, try ti use Doc2Vec.
Seems using Doc2Vec from Gensim on both corpora (CVs and job descriptions) separately and then using cosine similarity between the two vectors is the easiest flow to work. It works better than others on documents which are not similar in form and words content but similar in context and sematics, so merely keywords would not help much here.
Then you can try to train CNN on the corpus of pairs of matched CV&JD with labels like yes/no if available and use it to qulaify CVs/resumees against job descriptions.
Basically I'm going to try these aproaches in my pretty much the same task, pls see https://datascience.stackexchange.com/questions/22421/is-there-an-algorithm-or-nn-to-match-two-documents-basically-not-closely-simila
Since its highly likely that job description and resume content can be different, you should think from semantics point of view. One thing possible you can do is use some domain knowledge. But its pretty difficult to gain domain knowledge for a variety of job types. Researchers sometimes use dictionary to augment the similarity matching between documents.
Researchers are using deep neural networks to capture both syntactic and semantic structure of documents. You can use doc2Vec to compare two documents. Gensim can produce doc2Vec representation for you. I believe that will give better results compared to keyword extraction and similarity computation. You can build your own neural network model to train on job descriptions and resumes. I guess neural networks will be effective for your work.

Features Vectors to build classifier to detect subjectivity

I am trying to build a classifier to detect subjectivity. I have text files tagged with subjective and objective . I am little lost with the concept of features creation from this data. I have found the lexicon of the subjective and objective tag. One thing that I can do is to create a feature of having words present in respective dictionary. Maybe the count of words present in subjective and objective dictionary. After that I intend to use naive bayes or SVM to develop the model
My problem is as follow
Is my approach correct ?
Can I create more features ? If possible suggest some or point me to some paper or link
Can I do some test like chi -sq etc to identify effective words from the dictionary ?
You are basically on the right track. I would try and apply classifier with features you already have and see how well it will work, before doing anything else.
Actually best way to improve your work is to google for subjectivity classification papers and read them (there are a quite a number of them). For example this one lists typical features for this task.
And yes Chi-squared can be used to construct dictionaries for text classification (other commonly used methods are TD*IDF, pointwise mutal information and LDA)
Also, recently new neural network-based methods for text classification such as paragraph vector and dynamic convolutional neural networks with k-max pooling demonstrated state-of-the-art results on sentiment analysis, thus they should probably be good for subjectivity classification as well.

News Article Categorization (Subject / Entity Analysis via NLP?); Preferably in Node.js

Objective: a node.js function that can be passed a news article (title, text, tags, etc.) and will return a category for that article ("Technology", "Fashion", "Food", etc.)
I'm not picky about exactly what categories are returned, as long as the list of possible results is finite and reasonable (10-50).
There are Web APIs that do this (eg, alchemy), but I'd prefer not to incur the extra cost (both in terms of external HTTP requests and also $$) if possible.
I've had a look at the node module "natural". I'm a bit new to NLP, but it seems like maybe I could achieve this by training a BayesClassifier on a reasonable word list. Does this seem like a good/logical approach? Can you think of anything better?
I don't know if you are still looking for an answer, but let me put my two cents for anyone who happens to come back to this question.
Having worked in NLP i would suggest you look into the following approach to solve the problem.
Don't look for a single package solution. There are great packages out there, no doubt for lots of things. But when it comes to active research areas like NLP, ML and optimization, the tools tend to be atleast 3 or 4 iterations behind whats there is academia.
Coming to the core problem. What you want to achieve is text classification.
The simplest way to achieve this would be an SVM multiclass classifier.
Simplest yes, but also with very very (see the double stress) reasonable classification accuracy, runtime performance and ease of use.
The thing which you would need to work on would be the feature set used to represent your news article/text/tag. You could use a bag of words model. add named entities as additional features. You can use article location/time as features. (though for a simple category classification this might not give you much improvement).
The bottom line is. SVM works great. they have multiple implementations. and during runtime you don't really need much ML machinery.
Feature engineering on the other hand is very task specific. But given some basic set of features and a good labelled data you can train a very decent classifier.
here are some resources for you.
http://svmlight.joachims.org/
SVM multiclass is what you would be interested in.
And here is a tutorial by SVM zen himself!
http://www.cs.cornell.edu/People/tj/publications/joachims_98a.pdf
I don't know about the stability of this but from the code its a binary classifier SVM. which means if you have a known set of tags of size N you want to classify the text into, you will have to train N binary SVM classifiers. One each for the N category tags.
Hope this helps.

NLP software for classification of large datasets

Background
For years I've been using my own Bayesian-like methods to categorize new items from external sources based on a large and continually updated training dataset.
There are three types of categorization done for each item:
30 categories, where each item must belong to one category, and at most two categories.
10 other categories, where each item is only associated with a category if there is a strong match, and each item can belong to as many categories as match.
4 other categories, where each item must belong to only one category, and if there isn't a strong match the item is assigned to a default category.
Each item consists of English text of around 2,000 characters. In my training dataset there are about 265,000 items, which contain a rough estimate of 10,000,000 features (unique three word phrases).
My homebrew methods have been fairly successful, but definitely have room for improvement. I've read the NLTK book's chapter "Learning to Classify Text", which was great and gave me a good overview of NLP classification techniques. I'd like to be able to experiment with different methods and parameters until I get the best classification results possible for my data.
The Question
What off-the-shelf NLP tools are available that can efficiently classify such a large dataset?
Those I've tried so far:
NLTK
TIMBL
I tried to train them with a dataset that consisted of less than 1% of the available training data: 1,700 items, 375,000 features. For NLTK I used a sparse binary format, and a similarly compact format for TIMBL.
Both seemed to rely on doing everything in memory, and quickly consumed all system memory. I can get them to work with tiny datasets, but nothing large. I suspect that if I tried incrementally adding the training data the same problem would occur either then or when doing the actual classification.
I've looked at Google's Prediction API, which seem to do much of what I'm looking for but not everything. I'd also like to avoid relying on an external service if possible.
About the choice of features: in testing with my homebrew methods over the years, three word phrases produced by far the best results. Although I could reduce the number of features by using words or two word phrases, that would most likely produce inferior results and would still be a large number of features.
After this post and based on the personal experience, I would recommend Vowpal Wabbit. It is said to have one of the fastest text classification algorithms.
MALLET has a number of classifiers (NB, MaxEnt, CRF, etc). It's written Andrew McCallum's group. SVMLib is another good option, but SVM models typically require a bit more tuning than MaxEnt. Alternatively some sort of online clustering like K-means might not be bad in this case.
SVMLib and MALLET are quite fast (C and Java) once you have your model trained. Model training can take a while though! Unfortunately it's not always easy to find example code. I have some examples of how to use MALLET programmatically (along with the Stanford Parser, which is slow and probably overkill for your purposes). NLTK is a great learning tool and is simple enough that is you can prototype what you are doing there, that's ideal.
NLP is more about features and data quality than which machine learning method you use. 3-grams might be good, but how about character n-grams across those? Ie, all the character ngrams in a 3-gram to account for spelling variations/stemming/etc? Named entities might also be useful, or some sort of lexicon.
I would recommend Mahout as it is intended for handling very large scale data sets.
The ML algorithms are built over Apache Hadoop(map/reduce), so scaling is inherent.
Take a look at classification section below and see if it helps.
https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms
Have you tried MALLET?
I can't be sure that it will handle your particular dataset but I've found it to be quite robust in previous tests of mine.
However, I my focus was on topic modeling rather than classification per se.
Also, beware that with many NLP solutions you needn't input the "features" yourself (as the N-grams, i.e. the three-words-phrases and two-word-phrases mentioned in the question) but instead rely on the various NLP functions to produce their own statistical model.

Resources