Not able to plot using plt.scatter due to invalid 'c' argument - python-3.x

In the google colab sheet (link: https://colab.research.google.com/drive/1Jo2opgxHH8YZtcscWxx7xQo7Hhwi-Ky3)
cell No: 2 - Dataset. There is a section :- Visualize the dataset using matplotlib. The data looks like a "flower" with some red (label y=0) and some blue (y=1) points. Your goal is to build a model to fit this data.
In that the below code written gives the error:
ValueError: 'c' argument has 1 elements, which is not acceptable for use with 'x' with size 400, 'y' with size 400.
The same line run from jupyter notebook gives no error. How to resolve it?
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);
Y has shape(1,400)
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1]], dtype=uint8)

Try using c=Y[0, :] unstead of c=Y

Related

converting from BigInt to BitArray

what would be best way to convert object using rust from bigint (BigInt) to bits (BitArray<217>) also in reverse (example below)
using binary to decimal calculator I verified by hand that bigint and bits equate
let bigint = BigInt::parse_bytes("141644482300309102636663083870634002744809361056209271964506585197".as_ref(), 10);
to
let bits = BitArray::new( [1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1]);
crates ref.
for BigInt: https://crates.io/crates/num-bigint (num-bigint = "0.4.3")
for BitArray: https://crates.io/crates/bitarray (bitarray = "0.10.0")
Couple of misconceptions:
You can't convert a size known at runtime (BigInt) to a size known at compile time (BitArray)
BigInt is signed, but at no point during your conversion you consider signedness. You probably want to use BigUint instead if you want to ignore signedness.
Your BitArray for comparison only consists of 1 and 0 values. bitarray::BitArray, however, is meant as bytes, meaning, each value is 8 bits, valued from 0 to 255. If you convert it, the value is actually BitArray::new([1, 88, 81, 147, 230, 162, 120, 203, 210, 232, 153, 239, 115, 92, 222, 74, 147, 18, 216, 202, 55, 207, 181, 126, 72, 92, 248, 109]) and 28 long.
bitarray::BitArray does not seem to be able to iterate over it bitwise, so I don't know how useful this library is for you. The fact that it forces compile time size is also not compatible with your usecase. You should probably choose a different library. The entire concept of a "bit array" is probably not what you want, you probably want a "bit vector" instead with a runtime size.
That said, bitarray consists of packed bits, meaning 8 bits per value (or more). If you want a pure Vec<bool>, you don't need any of this, you can directly convert it to that:
use num_bigint::BigUint;
fn main() {
let bigint = BigUint::parse_bytes(
"141644482300309102636663083870634002744809361056209271964506585197".as_ref(),
10,
)
.unwrap();
let bits = bigint
.to_bytes_be()
.into_iter()
.flat_map(|val| {
[
(val >> 7) & 1,
(val >> 6) & 1,
(val >> 5) & 1,
(val >> 4) & 1,
(val >> 3) & 1,
(val >> 2) & 1,
(val >> 1) & 1,
(val >> 0) & 1,
]
.into_iter()
})
.collect::<Vec<_>>();
println!("{:?}", bits);
}
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1]
Not that the value you give seems to be little-endian, while this one is big-endian.
Here is an even shorter version, utilizing the crate bitvec:
use bitvec::{order::Msb0, vec::BitVec};
use num_bigint::BigUint;
fn main() {
let bigint = BigUint::parse_bytes(
"141644482300309102636663083870634002744809361056209271964506585197".as_ref(),
10,
)
.unwrap();
let bits: BitVec<_, Msb0> = BitVec::from_vec(bigint.to_bytes_be());
println!("{}", bits);
}
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1]
Or, if you prefer little endian:
use bitvec::{order::Lsb0, vec::BitVec};
use num_bigint::BigUint;
fn main() {
let bigint = BigUint::parse_bytes(
"141644482300309102636663083870634002744809361056209271964506585197".as_ref(),
10,
)
.unwrap();
let bits: BitVec<_, Lsb0> = BitVec::from_vec(bigint.to_bytes_le());
println!("{}", bits);
}
[1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Note that while bits is packed, you can still iterate over it bitwise. If you want to convert it to a u8 vector, do:
let bits_u8: Vec<u8> = bits.into_iter().map(Into::into).collect();

How can I draw the Confusion Matrix when using image_dataset_from_directory in Tensorflow2.x?

My TF version is 2.9 and Python 3.8.
I have built an image binary classification CNN model and I am trying to get a confusion matrix.
The dataset structure is as follows.
train/
│------ benign/
│------ normal/
test/
│------ benign/
│------ normal/
The dataset configuration is as follows.
train_ds = tf.keras.utils.image_dataset_from_directory(
directory = train_data_dir,
labels="inferred",
validation_split=0.2,
subset="training",
seed=1337,
color_mode='grayscale',
image_size=(img_height, img_width),
batch_size=batch_size,
)
val_ds = tf.keras.utils.image_dataset_from_directory(
directory = train_data_dir,
labels="inferred",
validation_split=0.2,
subset="validation",
seed=1337,
color_mode='grayscale',
image_size=(img_height, img_width),
batch_size=batch_size,
)
test_ds = tf.keras.utils.image_dataset_from_directory(
directory = test_data_dir,
color_mode='grayscale',
seed=1337,
image_size=(img_height, img_width),
batch_size=batch_size,
)
I wrote the code referring to the following link to get the confusion matrix.
Reference Page
And this is my code about the confusion matrix.
predictions = model.predict(test_ds)
y_pred = []
y_true = []
# iterate over the dataset
for image_batch, label_batch in test_ds: # use dataset.unbatch() with repeat
# append true labels
y_true.append(label_batch)
# compute predictions
preds = model.predict(image_batch)
# append predicted labels
y_pred.append(np.argmax(preds, axis = - 1))
# convert the true and predicted labels into tensors
true_labels = tf.concat([item for item in y_true], axis = 0)
predicted_labels = tf.concat([item for item in y_pred], axis = 0)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(true_labels, predicted_labels)
print(cm)
y_pred and y_true were obtained from test_ds as above, and the results of confusion matrix were as follows.
[[200 0]
[200 0]]
So I tried outputting true_labels and predicted_labels, and confirmed that predicted_labels are both 0 as follows.
print(true_labels)
<tf.Tensor: shape=(400,), dtype=int32, numpy=
array([0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0,
1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0,
0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1,
0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1,
1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,
0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1,
0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1,
1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0,
0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0,
0, 0, 1, 1])>
print(predicted_labels)
<tf.Tensor: shape=(400,), dtype=int64, numpy=
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0], dtype=int64)>
I'm not sure why predicted_labels are all zero.
But this is wrong. I think the following results are correct.
[[200 0]
[0 200]]
What is wrong? I've been struggling for a few days. Please please help me.
Thanks a lot.
In case of Image Binary Classification, threshold should be used to obtain predict label after model.predict(test_ds). I found that modifying the code in my question y_pred.append(np.argmax(preds, axis = - 1)) to y_pred.append(np.where(preds > threshold, 1, 0)) solved the problem. Hope it was helpful to someone.

Binary values of cryptographic keys

I'm using Python 3.7 and the NaCl cryptography library. I'm trying to print the binary values of the public and private keys. So far I can only print the hex values with this code:
import nacl.utils
from nacl.public import PrivateKey, Box
skbob = PrivateKey.generate()
print( bytes(skbob).hex() )
Can someone tell me how to print the keys binary value?
So you can print the actual 1's and 0's of the secret key using this code:
import nacl.utils
from nacl.public import PrivateKey, Box
def access_bit(data, num):
base = int(num // 8)
shift = int(num % 8)
return (data[base] & (1<<shift)) >> shift
skbob = PrivateKey.generate()
print( bytes(skbob).hex())
print([access_bit(bytes(skbob),i) for i in range(len(bytes(skbob))*8)])
You will see an output like this:
b32965d39933fc447a5c3bcdb00b73ef5de0b9cd88aba35a1743e38d88c8bec1
[1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1]
And as you will see, this is 256-bits of entropy, just as expected.
FWIW, I did the same when I was learning about cryptography, there is something really nice in seeing the raw data, and getting your hands dirty with the low level stuff.
Best,
Woodstock

Outlier detection in discrete signals

I have a discrete signal of value 0,1,2,3 that shall look like this in ideal case:
but it reality it looks like this most of the times:
so to detect these outliers I used a rolling median in pandas, dfResult dataframe contains 511 values equal either to 0,1,2,3, in predicted columns.
from pandas.core.window import Rolling
threshold = 1
dfResult['median'] = dfResult['predicted'].rolling(10).median()
difference = np.abs(dfResult['predicted'] - dfResult['median'])
outlier_idx = difference > threshold
Now when it is detecting wrong outliers along with correct ones as seen below:
now how I could remove these wrong outliers which are shown after 300 ticks. Any redirection/blogs to checking outliers in discrete signals will be much appreciated. I do not need to detect outliers in real-time, I only have to do post processing.
sample data:
dfResult['predicted'].values
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 1, 2, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0])
Here is how I will go about it:
window can be used to select the width of outlier.
window = 2
#Indices of change
diff_ind = df.data.diff()[df.data.diff()!=0].index
diff_ind = pd.DataFrame({'diff_ind':diff_ind})
outlier_ind = df_diff_ind.diff_ind[df_diff_ind.diff_ind.diff() < window]
outlier_ind.values will have array([ 26, 251, 252], dtype=int64) which are the indices of values you refer to as outliers.
You can do whatever you feel fit with these :)
Hope this helps.

how to slice values from a group of list?

how to get first value (i.e index 0) of all the list and store it in another list. and second value (i.e index 1) in all list and store in another list and so on.
[[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
, [0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
, [0, 0, 0, 0, 0, 1, 0, 1, 0, 0]
, [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
, [0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
, [0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
, [0, 0, 0, 0, 0, 1, 1, 1, 0, 0]
, [0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
, [0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]]

Resources