Keras VGG16 pretrained model accuracy does not increase - python-3.x

Hi guys i have a problem on VGG16 on Keras.
I am trying to make accuracy higher but did not work.
I only have 46 data training, 12 classes, and 26 data validation.
Currently, the highest accuracy that I can get is 0.18.
I try to change the batch size into 2 but the result is worst than i expected.
I don't think I should set the data training sample should be higher than my actual data.
What should I do to increase the accuracy?
This is my actual code:
from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
from keras.layers import Input, Flatten, Dense, Dropout
from keras.models import Model, Sequential
from keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
# dimensions of our images.
from keras.preprocessing.image import ImageDataGenerator
img_width, img_height = 224, 224
train_data_dir = 'database/train'
validation_data_dir = 'database/validation'
nb_train_samples = 46
nb_validation_samples = 26
epochs = 50
batch_size = 4
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
#Get back the convolutional part of a VGG network trained on ImageNet
vgg_conv = VGG16(weights='imagenet', include_top=True)
vgg_conv.summary()
print('VGG Pretrained Model loaded.')
#Add a layer where input is the output of the second last layer
x = Dense(12, activation='softmax', name='predictions')(vgg_conv.layers[-2].output)
model = Model(input=vgg_conv.input, output=x)
#In the summary, weights and layers from VGG part will be hidden, but they will be fit during the training
model.summary()
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 224,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 224)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
# compile model
# model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizers.RMSprop(lr=2e-4), metrics=['accuracy'])
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
# Train the model
history = model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples / batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples / batch_size)
# Save the model
model.save('vgg16_pretrained_5.h5')
# Check Performance
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'b', label='Training acc')
plt.plot(epochs, val_acc, 'r', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()

Since you have 12 classes and only 46 observations, it roughly becomes 2 observations per class (This is just a guess without even looking at the data set). With this little data, the NN model can not even understand the pattern of the data and eventually will fail to generalize. So you need at least for than 2k observations for better results.

Related

Why is there no improvement in a categorical data time series model?

I built a simple categorical time series model to predict the next number of a random sequence, but the accuracy hardly moved even I trained it for 10000 epochs. The validation loss started to take off after a few hundred epochs. Could anyone make suggestions for improvement? Here's the model:
import os
import sys
import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
DEVICE = 'CPU'
if DEVICE == 'CPU':
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
else:
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
print(tf.test.gpu_device_name())
TOTAL_CATALOG=4
POSSIBLE_OUTCOME_COL=4
LOOK_BACK_WINDOW=1
TRAINING_DATA_RATIO=0.8
TRAINING_EPOCHS=10000
sys.path.insert(0, '/DataScience/MyModules')
from m6data import getDrawData, series_to_supervised, Split_data, get_all_categories
def get_all_categories_local(last_combination):
all_category = np.arange(1, last_combination+1)
return all_category.reshape(1,all_category.shape[0])
All_categories=get_all_categories_local(TOTAL_CATALOG)
data_sequence = [1,1,2,4,2,3,1,2,3,3,4,1,2,3,4,2,2,3,1,3]
raw_df = pd.DataFrame(data_sequence, columns=['NE'])
values = raw_df.values
# 05-Apr-2022: One-Hot Encoding
oh_encoder = OneHotEncoder(categories=All_categories, sparse=False)
encoded_input = oh_encoder.fit_transform(values)
FEATURES = encoded_input.shape[1]
POSSIBLE_OUTCOME_COL = FEATURES
draw_reframe = series_to_supervised(encoded_input, LOOK_BACK_WINDOW,1)
train, test = Split_data(draw_reframe, TRAINING_DATA_RATIO)
# Total input = all possible One-Hot Encoding outcome * number of look-back samples.
ALL_INPUT = POSSIBLE_OUTCOME_COL * LOOK_BACK_WINDOW
# split into input and outputs
train_X, train_y = train.iloc[:,:ALL_INPUT], train.iloc[:,ALL_INPUT:]
test_X, test_y = test.iloc[:,:ALL_INPUT], test.iloc[:,ALL_INPUT:]
train_X = train_X.values.reshape((train_X.shape[0], LOOK_BACK_WINDOW , FEATURES))
test_X = test_X.values.reshape((test_X.shape[0], LOOK_BACK_WINDOW, FEATURES))
print(train_X.shape, train_y.shape)
print(test_X.shape, test_y.shape)
def create_model():
model = Sequential()
model.add(LSTM(10,
return_sequences=False,
input_shape=(train_X.shape[1], train_X.shape[2]),
activation='relu'
)
)
#model.add(LSTM(20))
model.add(Dense(units=train_y.shape[1], activation='softmax'))
model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate=0.00005),
loss = 'categorical_crossentropy',
metrics=['accuracy'])
return model
model=create_model()
history = model.fit(
train_X, train_y,
epochs=TRAINING_EPOCHS,
batch_size=8,
validation_data=(test_X, test_y),
verbose=1,
)
Here are the plots of accuracies and losses (red=training, blue=validation).
Accuracies
Losses
Thank you in advance for any suggestions.
Update (13-Jun-2022)
I changed my model to the following
def create_model():
model = Sequential()
model.add(LSTM(50,
return_sequences=True,
input_shape=(train_X.shape[1], train_X.shape[2]),
activation='relu'
)
)
model.add(LSTM(units=1000, kernel_regularizer=regularizers.l1(0.05), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=1000, kernel_regularizer=regularizers.l1(0.05), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=1000, kernel_regularizer=regularizers.l1(0.05), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=1000, kernel_regularizer=regularizers.l1(0.05), activation='relu'))
model.add(Dropout(0.3))
model.add(BatchNormalization())
model.add(Dense(1000))
model.add(Dense(units=train_y.shape[1], activation='softmax'))
model.compile(optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2, nesterov=True),
#tf.keras.optimizers.Adam(learning_rate=0.001),
loss = 'categorical_crossentropy',
metrics=['accuracy'])
return model
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=20,min_lr=1e-10)
early_stop = EarlyStopping(monitor='loss', patience=100)
history = model.fit(
train_X, train_y,
epochs=TRAINING_EPOCHS,
batch_size=16,
validation_split=0.1,
validation_data=(test_X, test_y),
verbose=1,
shuffle=False,
callbacks=([reduce_lr], [early_stop])
Accuracy was bouncing around and Val_accuracy was zero all the way. The loss and val_loss were almost the same and dropping together.
Can anyone advise what I can do in this scenario?

Using SVM classifier as the last layer for a Pre-trained Model(VGG16)

I have trained my model(binary classification) of CNN using Keras and now I want to use an SVM classifier instead of using a fully connected layer for classification.
I used a VGG16 pre-trained network for feature extraction and I also used Data augmentation.
What is the possible way to add SVM as the last layer for classification?
#Parametres
import keras
from keras.applications import VGG16
import sys
from PIL import Image
#Using VGG16 Pre-trained Model
conv_base = VGG16(weights = 'imagenet',
include_top = False,
input_shape=(224, 224, 3))
conv_base.summary()
import numpy as np
import os
from keras.preprocessing.image import ImageDataGenerator
base_dir = 'C:Covid Detection/Code/Dataset-created')
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
from keras import models
from keras import layers
model = models.Sequential()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
conv_base.trainable = False
from keras import optimizers
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(224, 224),
batch_size=20,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(224, 224),
batch_size=20,
class_mode='binary')
# Compile the model
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=2e-5),
metrics=['acc'])
# Train the model
history = model.fit_generator(
train_generator,
steps_per_epoch=50,
epochs=30,
validation_data=validation_generator,
validation_steps=50)
# Save the model
model.save('vgg16_aug.h5')
from keras.applications.vgg16 import VGG16
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.applications.vgg16 import preprocess_input
base_model = VGG16(weights='imagenet')
model = Model(inputs=base_model.input,
outputs=base_model.get_layer('flatten').output)
model.summary()
Create a function to extract features using VGG16
def get_features(img_path):
img = load_img(img_path, target_size=(224, 224))
x = img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
flatten = model.predict(x)
return list(flatten[0])
features, labels = [], []
# Loop into the directory of images and extract features and labels
for image_path in folder:
features.append(extract_features(image_path))
labels.append("#some label")
Till here we extracted the features and labels, Now we train these features using SVM as follows:-
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score
X_train, X_test, y_train, y_test = train_test_split( features,
labels,
test_size=0.30)
clf = LinearSVC(random_state=0, tol=1e-5)
clf.fit(X_train, y_train)
predicted = clf.predict(X_test)
# get the accuracy
print(accuracy_score(y_test, predicted))

ValueError: logits and labels must have the same shape

I have a Multi-Layer Perceptron network in Keras with two hidden Layers.
While trying to train the network I get the Error in the fit_generator :
Error:
ValueError: logits and labels must have the same shape ((None, 2) vs (None, 1))
My Code is:
import numpy as np
import keras
from keras import layers
from keras import Sequential
# Define Window size (color images)
img_window = (32,32,3)
# Flatten the Window shape
input_shape = np.prod(img_window)
print(input_shape)
# Define MLP with two hidden layers(neurons)
simpleMLP = Sequential(
[layers.Input(shape=img_window),
layers.Flatten(), # Flattens the input, conv2D to 1 vector , which does not affect the batch size.
layers.Dense(input_shape//2 ,activation="relu"),
layers.Dense(input_shape//2 ,activation="relu"),
layers.Dense(2,activation="sigmoid"),
]
)
# After model is "built" call its summary() menthod to display its contents
simpleMLP.summary()
# Initialization
# Size of the batches of data, adjust it depends on RAM
batch_size = 128
epochs = 5
# Compile MLP model with 3 arguments: loss function, optimizer, and metrics function to judge model performance
simpleMLP.compile(loss="binary_crossentropy",optimizer="adam",metrics=["binary_accuracy"]) #BCE
# Create ImagedataGenerator to splite training, validation dataset
from keras.preprocessing.image import ImageDataGenerator
train_dir = '/content/train'
train_datagen = ImageDataGenerator(
rescale=1./255, # rescaling factor
shear_range=0.1,
zoom_range=0.1,
horizontal_flip=True,
fill_mode='nearest')
valid_dir = '/content/valid'
valid_datagen =ImageDataGenerator(
rescale=1./255,
shear_range=0.1,
zoom_range=0.1,
horizontal_flip=True,
fill_mode='nearest')
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=img_window[:2],
batch_size=batch_size,
class_mode='binary',
color_mode='rgb'
)
validation_generator = valid_datagen.flow_from_directory(
valid_dir,
target_size=img_window[:2],
batch_size=batch_size,
class_mode='binary',
color_mode='rgb')
# Train the MLP model
simpleMLP.fit_generator((
train_generator,
steps_per_epoch= 8271 // batch_size,
epochs=5,
validation_data=validation_generator,
validation_steps= 2072 // batch_size)
Can you please advise me how to resolve this problem? thanks in advance.
You problem simply is that, you have got labels of shape (N, 1) and loss defined as binary_crossentropy. This means you should have a single output node in the last layer. But you have a model that outputs two classes.
simpleMLP = Sequential(
[...
layers.Dense(2,activation="sigmoid"),
]
)
Simply change this to,
simpleMLP = Sequential(
[...
layers.Dense(1,activation="sigmoid"),
]
)

Why does my model predict the same label?

I am training a small network and the training seems to go fine, the val loss decreases, I reach validation accuracy around 80, and it actually stops training once there is no more improvement (patience=10). It trained for 40 epochs. However, it keeps predicting only one class for every test image! I tried to initialize the conv layers randomly, I added regularizers, I switched from Adam to SGD, I added clipvalue, I added dropouts. I also switched to softmax (I have only two labels but I saw some recommendation on using softmax and Dense layer with 2 neurons). Some or one of these helped with the overfitting, but nothing worked for the prediction problem. The data is balanced, though it is a small dataset, so it doesn't make sense that it reaches 80% if it predicts the same labels for evaluation set as well.
What is wrong with my model and how can I fix it? Any comments are welcome.
#Import some packages to use
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
import os
from keras.regularizers import l2
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from keras.layers.core import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.initializers import RandomNormal
os.environ["CUDA_VISIBLE_DEVICES"]="0"
epochs = 200
callbacks = []
#schedule = None
decay = 0.0
earlyStopping = EarlyStopping(monitor='val_loss', patience=10, verbose=0, mode='min')
mcp_save = ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, monitor='val_loss', mode='min')
reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1, epsilon=1e-5, mode='min')
train_dir = '/home/d/Desktop/s/data/train'
eval_dir = '/home/d/Desktop/s/data/eval'
test_dir = '/home/d/Desktop/s/data/test'
# create a data generator
train_datagen = ImageDataGenerator(rescale=1./255, #Scale the image between 0 and 1
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,)
val_datagen = ImageDataGenerator(rescale=1./255) #We do not augment validation data. we only perform rescale
test_datagen = ImageDataGenerator(rescale=1./255) #We do not augment validation data. we only perform rescale
# load and iterate training dataset
train_generator = train_datagen.flow_from_directory(train_dir, target_size=(224,224),class_mode='categorical', batch_size=16, shuffle='True', seed=42)
# load and iterate validation dataset
val_generator = val_datagen.flow_from_directory(eval_dir, target_size=(224,224),class_mode='categorical', batch_size=16, shuffle='True', seed=42)
# load and iterate test dataset
test_generator = test_datagen.flow_from_directory(test_dir, target_size=(224,224), class_mode=None, batch_size=1, shuffle='False', seed=42)
#We will use a batch size of 32. Note: batch size should be a factor of 2.***4,8,16,32,64...***
#batch_size = 4
#from keras import layers
from keras import models
from keras import optimizers
#from keras.layers import Dropout
#from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing.image import img_to_array, load_img
model = models.Sequential()
model.add(Conv2D(64, (3, 3), activation='relu', name='block1_conv1', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05), input_shape=(224, 224, 3)))
model.add(Conv2D(64, (3, 3), activation='relu', name='block1_conv2', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(128, (3, 3), activation='relu', name='block2_conv1', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
model.add(Conv2D(128, (3, 3), activation='relu', name='block2_conv2',kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
model.add(MaxPooling2D((2, 2), name='block2_pool'))
model.add(Dropout(0.2))
model.add(Conv2D(256, (3, 3), activation='relu', name='block3_conv1', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
model.add(Conv2D(256, (3, 3), activation='relu', name='block3_conv2', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
model.add(Conv2D(256, (3, 3), activation='relu', name='block3_conv3', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
model.add(MaxPooling2D((2, 2), name='block3_pool'))
model.add(Dropout(0.2))
#model.add(layers.Conv2D(512, (3, 3), activation='relu', name='block4_conv1'))
#model.add(layers.Conv2D(512, (3, 3), activation='relu', name='block4_conv2'))
#model.add(layers.Conv2D(512, (3, 3), activation='relu', name='block4_conv3'))
#model.add(layers.MaxPooling2D((2, 2), name='block4_pool'))
model.add(Flatten())
model.add(Dense(256, kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01), activation='relu', kernel_initializer='he_uniform'))
model.add(Dropout(0.5))
model.add(Dense(2, kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01), activation='softmax'))
#Lets see our model
model.summary()
#We'll use the RMSprop optimizer with a learning rate of 0.0001
#We'll use binary_crossentropy loss because its a binary classification
#model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(lr=1e-5, momentum=0.9), metrics=['acc'])
model.compile(loss='categorical_crossentropy',
#optimizer=optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=decay),
optimizer=optimizers.SGD(lr= 0.0001, clipvalue = 0.5, decay=1e-6, momentum=0.9, nesterov=True),
metrics=['accuracy'])
#The training part
#We train for 64 epochs with about 100 steps per epoch
history = model.fit_generator(train_generator,
steps_per_epoch=train_generator.n // train_generator.batch_size,
epochs=epochs,
validation_data=val_generator,
validation_steps=val_generator.n // val_generator.batch_size,
callbacks=[earlyStopping, mcp_save]) #, reduce_lr_loss])
#Save the model
model.save_weights('/home/d/Desktop/s/categorical_weights.h5')
model.save('/home/d/Desktop/s/categorical_model_keras.h5')
#lets plot the train and val curve
#get the details form the history object
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)
#Train and validation accuracy
plt.plot(epochs, acc, 'b', label='Training accuracy')
plt.plot(epochs, val_acc, 'r', label='Validation accuracy')
plt.title('Training and Validation accuracy')
plt.legend()
plt.figure()
#Train and validation loss
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and Validation loss')
plt.legend()
plt.show()
model.evaluate_generator(generator=val_generator, steps=val_generator.n // val_generator.batch_size)
STEP_SIZE_TEST=test_generator.n//test_generator.batch_size
test_generator.reset()
pred=model.predict_generator(test_generator,
steps=STEP_SIZE_TEST,
verbose=1)
predicted_class_indices=np.argmax(pred,axis=1)
labels = (train_generator.class_indices)
np.save('/home/d/Desktop/s/classes', labels)
labels = dict((v,k) for k,v in labels.items())
predictions = [labels[k] for k in predicted_class_indices]
filenames=test_generator.filenames
results=pd.DataFrame({"Filename":filenames,
"Predictions":predictions})
results.to_csv("categorical_results.csv",index=False)
One of the problems that could lead to such behavior is imbalanced dataset. Your model found out that if it predicts the dominant class each time, it would get a good results.
There are many ways to tackle an imbalance dataset. Here is a good tutorial.
One of the easiest yet powerful solution is to apply higher penalty to your loss if it wrongly predicted the smaller class. This can be implemented in keras by setting the parameter class_weight in the fitor fit_generator function.
It can be a dictionary of example:
class_weight = {0: 0.75, 1: 0.25} # does not necessarily add to up 1.
history = model.fit_generator(train_generator,
steps_per_epoch=train_generator.n // train_generator.batch_size,
epochs=epochs,
class_weight= class_weight, # this is the important part
validation_data=val_generator,
validation_steps=val_generator.n // val_generator.batch_size,
callbacks=[earlyStopping, mcp_save]) #, reduce_lr_loss])
Adding to Coderji's answer, it might also prove advantageous to counter class imbalance using stratified k-fold cross-validation, with k = 5 being common practice. This basically splits your data set up into k splits like regular cross-validation, but also stratifies these splits. In the case of class imbalance, each of these splits contain over-/undersampled classes compensating for their lower/higher occurence within the data set.
As of yet Keras does not have it's own way to use stratified k-fold cross-validation. Instead it's advised to use sklearn's StratifiedKFold. This article gives a detailed overview how to achieve this in Keras,
with the gist of it being:
from sklearn.model_selection import StratifiedKFold# Instantiate the cross validator
skf = StratifiedKFold(n_splits=kfold_splits, shuffle=True)# Loop through the indices the split() method returns
for index, (train_indices, val_indices) in enumerate(skf.split(X, y)):
print "Training on fold " + str(index+1) + "/10..." # Generate batches from indices
xtrain, xval = X[train_indices], X[val_indices]
ytrain, yval = y[train_indices], y[val_indices] # Clear model, and create it
model = None
model = create_model()
# Debug message I guess
# print "Training new iteration on " + str(xtrain.shape[0]) + " training samples, " + str(xval.shape[0]) + " validation samples, this may be a while..."
history = train_model(model, xtrain, ytrain, xval, yval)
accuracy_history = history.history['acc']
val_accuracy_history = history.history['val_acc']
print "Last training accuracy: " + str(accuracy_history[-1]) + ", last validation accuracy: " + str(val_accuracy_history[-1])
create_model() returns a compiled Keras model
train_model() returns last history object of its last model.fit() operation

Data Augmentation hurts accuracy Keras

I'm trying to adapt Deep Learning with Python section 5.3 Feature extraction with Data Augmentation to a 3-class problem with resnet50 (imagenet weights).
Full code at https://github.com/morenoh149/plantdisease
from keras import models
from keras import layers
from keras.applications.resnet50 import ResNet50
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
input_shape = (224, 224, 3)
target_size = (224, 224)
batch_size = 20
conv_base = ResNet50(weights='imagenet', input_shape=input_shape, include_top=False)
model = models.Sequential()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(3, activation='softmax'))
conv_base.trainable = False
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'input/train',
target_size=target_size,
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
'input/validation',
target_size=target_size,
batch_size=batch_size,
class_mode='categorical')
model.compile(loss='categorical_crossentropy',
optimizer=optimizers.RMSprop(lr=2e-5),
metrics=['acc'])
history = model.fit_generator(
train_generator,
steps_per_epoch=96,
epochs=30,
verbose=2,
validation_data=validation_generator,
validation_steps=48)
Questions:
the book doesn't go much into ImageDataGenerator and selecting steps_per_epoch and validation_steps. What should these values be?
I have 3 classes, 1000 images each. I've split it 60/20/20 train/validation/test.
I was able to get a validation accuracy of 60% without data augmentation. Above I've simplified the ImageDataGenerator to only rescale. This model has a validation accuracy of 30% Why?
What changes do I need to make to the data-augmented version of this script to match the accuracy with no augmentation?
UPDATE:
This may be an issue with keras itself
https://github.com/keras-team/keras/issues/9214
https://github.com/keras-team/keras/pull/9965
To answer your first question: steps_per_epochis the number of batches the training generator should yield before considering an epoch finished. If you have 600 training images with batch size 20, this would be 30 steps per epoch et cetera. validation_steps applies the same logic to the validation data generator, be it at the end of each epoch.
In general, steps_per_epoch is the size of your dataset divided by the batch size.

Resources