How to programmatically get the number of fields of a struct? - struct

I have a custom struct like the following:
struct MyStruct {
first_field: i32,
second_field: String,
third_field: u16,
}
Is it possible to get the number of struct fields programmatically (like, for example, via a method call field_count()):
let my_struct = MyStruct::new(10, "second_field", 4);
let field_count = my_struct.field_count(); // Expecting to get 3
For this struct:
struct MyStruct2 {
first_field: i32,
}
... the following call should return 1:
let my_struct_2 = MyStruct2::new(7);
let field_count = my_struct2.field_count(); // Expecting to get count 1
Is there any API like field_count() or is it only possible to get that via macros?
If this is achievable with macros, how should it be implemented?

Are there any possible API like field_count() or is it only possible to get that via macros?
There is no such built-in API that would allow you to get this information at runtime. Rust does not have runtime reflection (see this question for more information). But it is indeed possible via proc-macros!
Note: proc-macros are different from "macro by example" (which is declared via macro_rules!). The latter is not as powerful as proc-macros.
If this is achievable with macros, how should it be implemented?
(This is not an introduction into proc-macros; if the topic is completely new to you, first read an introduction elsewhere.)
In the proc-macro (for example a custom derive), you would somehow need to get the struct definition as TokenStream. The de-facto solution to use a TokenStream with Rust syntax is to parse it via syn:
#[proc_macro_derive(FieldCount)]
pub fn derive_field_count(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as ItemStruct);
// ...
}
The type of input is ItemStruct. As you can see, it has the field fields of the type Fields. On that field you can call iter() to get an iterator over all fields of the struct, on which in turn you could call count():
let field_count = input.fields.iter().count();
Now you have what you want.
Maybe you want to add this field_count() method to your type. You can do that via the custom derive (by using the quote crate here):
let name = &input.ident;
let output = quote! {
impl #name {
pub fn field_count() -> usize {
#field_count
}
}
};
// Return output tokenstream
TokenStream::from(output)
Then, in your application, you can write:
#[derive(FieldCount)]
struct MyStruct {
first_field: i32,
second_field: String,
third_field: u16,
}
MyStruct::field_count(); // returns 3

It's possible when the struct itself is generated by the macros - in this case you can just count tokens passed into macros, as shown here. That's what I've come up with:
macro_rules! gen {
($name:ident {$($field:ident : $t:ty),+}) => {
struct $name { $($field: $t),+ }
impl $name {
fn field_count(&self) -> usize {
gen!(#count $($field),+)
}
}
};
(#count $t1:tt, $($t:tt),+) => { 1 + gen!(#count $($t),+) };
(#count $t:tt) => { 1 };
}
Playground (with some test cases)
The downside for this approach (one - there could be more) is that it's not trivial to add an attribute to this function - for example, to #[derive(...)] something on it. Another approach would be to write the custom derive macros, but this is something that I can't speak about for now.

Related

How to define one function for two types in Rust?

I am writing a Rust application. I'd like to have a method to display the text whether it is a string or number. Furthermore, I came up with the following solution, but it is duplicating the code. Is there a better way to do it in Rust?
Notice: I am not looking for a built-in function to print variables. It's just an example. I am looking for a way to implement the same feature for two types.
trait Display {
fn display(self);
}
impl Display for String {
fn display(self) -> () {
println!("You wrote: {}", self);
}
}
impl Display for i32 {
fn display(self) -> () {
println!("You wrote: {}", self);
}
}
fn main() {
let name: String = String::from("Tom Smykowski");
name.display();
let age: i32 = 22;
age.display();
}
You came close. But there is already a trait for converting things to strings - std::fmt::Display (and the automatically-implemented ToString) - so you don't need to have your own trait:
fn display<T: std::fmt::Display>(v: T) {
println!("You wrote: {v}");
}
fn main() {
let name: String = String::from("Tom Smykowski");
display(name);
let age: i32 = 22;
display(age);
}
Even if you don't need to display the types but do something else with them, we can take the idea from Display - instead of defining the whole functionality, define only the pieces that are different. For example, you can create a trait to convert the numbers to strings (or the opposite), or just have functions for each different piece - for example, printing itself without "You wrote: ".
I came up with the following solution, but it is duplicating the code. Is there a better way to do it in Rust?
Add a simple declarative macro on top, that is very common in the stdlib and all. e.g.
macro_rules! impl_display {
($t:ty) => {
impl Display for $t {
fn display(self) {
println!("You wrote {self}");
}
}
}
}
impl_display!(String);
impl_display!(i32);
impl_display!(i64);
impl_display!(f32);
Although:
usually the implementations would be different, though not always e.g. implementing an operation on all numeric types, or all unsigned numbers, that's one of the most common context you'll see it in the stdlib: the stdlib has no numeric trait but methods are usually implemented on all numeric types, so there's a handful of macros used for all of them, and when new methods are added they're just added to the relevant macro
here you're already relying on the existence and implementation of std::fmt::Display so you should just use that, your trait is not really useful

Can you store functions as fields in a struct? How to store instructions?

In my model, I have a Petgraph graph which stores as nodes a struct with fields as followed:
struct ControlBloc
{
name:String,
message_inbox:Vec<MessageObj>,
blocked:bool,
instruct:String,
inbox_capacity:f64,
buffer:Vec<MessageObj>,
number_discarded:u32,
clock_queue:SendingQueue,
clock_speed:f64,
}
In it there is a field called instruct in which I want to store instructions. I want to code the model in a way such that after some time, all the nodes will execute the instructions that are stored in the struct. Instructions can be for example send messages to other nodes, computing something... I want something versatile.
Is there a way to store functions as fields in a struct? and then after some time, the function stored can be called and whatever function will be executed?
One way that I see doing this is maybe using enum to store all the function names then using a function to map whatever enum to the corresponding function, for example:
enum FuncName {
SendMessage,
ComputeSize,
StoreSomething,
DoNothing,
}
fn exec_function(func:FuncName)
{
match func {
FuncName::SendMessage => send_message_function(input1,input2),
FuncName::ComputeSize => compute_size_function(input1,input2,input3),
FuncName::StoreSomething => store_something_funtion(input1),
FuncName::DoNothing => (),
}
}
However in this case you can't really customize the inputs of the FuncName function and they either have to be always preset to the same thing or in the input of exec_function you add all the different inputs fields of all the functions in FuncName but that seems rather overkill, even then, I dont really see how to pass them and store in the struct.
Is there then a way to directly add the functions or something in the struct? I know I'm breaking many Rust rules but say for example I had a variable already declared let bloc = ControlBloc::new(...); then you could set the function as for example bloc.instruct = send_message_function(node1,node2); and then when you called bloc.instruct then that would call whatever function is stored there.
Is something like this possible or am I dreaming or like very difficult (I am still learning the language)?
What you can do is storing Box<dyn Fn()> in your struct:
struct Foo {
instruct: Box<dyn Fn(Vec<i32>)>
}
fn sum(vec: Vec<i32>) {
let sum: i32 = vec.into_iter().sum();
println!("{}", sum);
}
fn main() {
let foo = Foo {
instruct: Box::new(|vec| {
let sum: i32 = vec.into_iter().sum();
println!("{}", sum);
})
};
(foo.instruct)(vec![1, 2, 3, 4]);
let foo = Foo {
instruct: Box::new(sum)
};
(foo.instruct)(vec![1, 2, 3, 4]);
}
Fn is implemented automatically by closures which only take immutable references to captured variables or don’t capture anything at all, as well as (safe) function pointers (with some caveats, see their documentation for more details). Additionally, for any type F that implements Fn, &F implements Fn, too.
#EDIT
In my example I used Vec<i32> as an abstract for multiple arguments. However if you are going to have some set of instructions that have different count of arguments, but within itself always the same, you might consider creating a trait Instruct and create struct for every different instruct that will implement this.
Playground
struct Foo<T> {
instruct: Box<dyn Instruct<T>>
}
trait Instruct<T> {
fn run(&self) -> T;
}
struct CalcSum {
f: Box<dyn Fn() -> i32>
}
impl CalcSum {
fn new(arg: Vec<i32>) -> CalcSum {
CalcSum {
f: Box::new(move || arg.iter().sum::<i32>()),
}
}
}
impl Instruct<i32> for CalcSum {
fn run(&self) -> i32 {
(self.f)()
}
}

Is there a macro that automatically creates a dictionary from an enum?

An enum is clearly a kind of key/value pair structure. Consequently, it would be nice to automatically create a dictionary from one wherein the enum variants become the possible keys and their payload the associated values. Keys without a payload would use the unit value. Here is a possible usage example:
enum PaperType {
PageSize(f32, f32),
Color(String),
Weight(f32),
IsGlossy,
}
let mut dict = make_enum_dictionary!(
PaperType,
allow_duplicates = true,
);
dict.insert(dict.PageSize, (8.5, 11.0));
dict.insert(dict.IsGlossy, ());
dict.insert_def(dict.IsGlossy);
dict.remove_all(dict.PageSize);
Significantly, since an enum is merely a list of values that may optionally carry a payload, auto-magically constructing a dictionary from it presents some semantic issues.
How does a strongly typed Dictionary<K, V> maintain the discriminant/value_type dependency inherent with enums where each discriminant has a specific payload type?
enum Ta {
K1(V1),
K2(V2),
...,
Kn(Vn),
}
How do you conveniently refer to an enum discriminant in code without its payload (Ta.K1?) and what type is it (Ta::Discriminant?) ?
Is the value to be set and get the entire enum value or just the payload?
get(&self, key: Ta::Discriminant) -> Option<Ta>
set(&mut self, value: Ta)
If it were possible to augment an existing enum auto-magically with another enum of of its variants then a reasonably efficient solution seems plausible in the following pseudo code:
type D = add_discriminant_keys!( T );
impl<D> for Vec<D> {
fn get(&self, key: D::Discriminant) -> Option<D> { todo!() }
fn set(&mut self, value: D) { todo!() }
}
I am not aware whether the macro, add_discriminant_keys!, or the construct, D::Discriminant, is even feasible. Unfortunately, I am still splashing in the shallow end of the Rust pool, despite this suggestion. However, the boldness of its macro language suggests many things are possible to those who believe.
Handling of duplicates is an implementation detail.
Enum discriminants are typically functions and therefore have a fixed pointer value (as far as I know). If such values could become constants of an associated type within the enum (like a trait) with attributes similar to what has been realized by strum::EnumDiscriminants things would look good. As it is, EnumDiscriminants seems like a sufficient interim solution.
A generic implementation over HashMap using strum_macros crate is provided based on in the rust playground; however, it is not functional there due to the inability of rust playground to load the strum crate from there. A macro derived solution would be nice.
First, like already said here, the right way to go is a struct with optional values.
However, for completeness sake, I'll show here how you can do that with a proc macro.
When you want to design a macro, especially a complicated one, the first thing to do is to plan what the emitted code will be. So, let's try to write the macro's output for the following reduced enum:
enum PaperType {
PageSize(f32, f32),
IsGlossy,
}
I will already warn you that our macro will not support brace-style enum variants, nor combining enums (your add_discriminant_keys!()). Both are possible to support, but both will complicate this already-complicated answer more. I'll refer to them shortly at the end.
First, let's design the map. It will be in a support crate. Let's call this crate denum (a name will be necessary later, when we'll refer to it from our macro):
pub struct Map<E> {
map: std::collections::HashMap<E, E>, // You can use any map implementation you want.
}
We want to store the discriminant as a key, and the enum as the value. So, we need a way to refer to the free discriminant. So, let's create a trait Enum:
pub trait Enum {
type DiscriminantsEnum: Eq + Hash; // The constraints are those of `HashMap`.
}
Now our map will look like that:
pub struct Map<E: Enum> {
map: std::collections::HashMap<E::DiscriminantsEnum, E>,
}
Our macro will generate the implementation of Enum. Hand-written, it'll be the following (note that in the macro, I wrap it in const _: () = { ... }. This is a technique used to prevent names polluting the global namespaces):
#[derive(PartialEq, Eq, Hash)]
pub enum PaperTypeDiscriminantsEnum {
PageSize,
IsGlossy,
}
impl Enum for PaperType {
type DiscriminantsEnum = PaperTypeDiscriminantsEnum;
}
Next. insert() operation:
impl<E: Enum> Map<E> {
pub fn insert(discriminant: E::DiscriminantsEnum, value: /* What's here? */) {}
}
There is no way in current Rust to refer to an enum discriminant as a distinct type. But there is a way to refer to struct as a distinct type.
We can think about the following:
pub struct PageSize;
But this pollutes the global namespace. Of course, we can call it something like PaperTypePageSize, but I much prefer something like PaperTypeDiscriminants::PageSize.
Modules to the rescue!
#[allow(non_snake_case)]
pub mod PaperTypeDiscriminants {
#[derive(Clone, Copy)]
pub struct PageSize;
#[derive(Clone, Copy)]
pub struct IsGlossy;
}
Now we need a way in insert() to validate the the provided discriminant indeed matches the wanted enum, and to refer to its value. A new trait!
pub trait EnumDiscriminant: Copy {
type Enum: Enum;
type Value;
fn to_discriminants_enum(self) -> <Self::Enum as Enum>::DiscriminantsEnum;
fn to_enum(self, value: Self::Value) -> Self::Enum;
}
And here's how our macro will implements it:
impl EnumDiscriminant for PaperTypeDiscriminants::PageSize {
type Enum = PaperType;
type Value = (f32, f32);
fn to_discriminants_enum(self) -> PaperTypeDiscriminantsEnum { PaperTypeDiscriminantsEnum::PageSize }
fn to_enum(self, (v0, v1): Self::Value) -> Self::Enum { Self::Enum::PageSize(v0, v1) }
}
impl EnumDiscriminant for PaperTypeDiscriminants::IsGlossy {
type Enum = PaperType;
type Value = ();
fn to_discriminants_enum(self) -> PaperTypeDiscriminantsEnum { PaperTypeDiscriminantsEnum::IsGlossy }
fn to_enum(self, (): Self::Value) -> Self::Enum { Self::Enum::IsGlossy }
}
And now insert():
pub fn insert<D>(&mut self, discriminant: D, value: D::Value)
where
D: EnumDiscriminant<Enum = E>,
{
self.map.insert(
discriminant.to_discriminants_enum(),
discriminant.to_enum(value),
);
}
And trivially insert_def():
pub fn insert_def<D>(&mut self, discriminant: D)
where
D: EnumDiscriminant<Enum = E, Value = ()>,
{
self.insert(discriminant, ());
}
And get() (note: seprately getting the value is possible when removing, by adding a method to the trait EnumDiscriminant with the signature fn enum_to_value(enum_: Self::Enum) -> Self::Value. It can be unsafe fn and use unreachable_unchecked() for better performance. But with get() and get_mut(), that returns reference, it's harder because you can't get a reference to the discriminant value. Here's a playground that does that nonetheless, but requires nightly):
pub fn get_entry<D>(&self, discriminant: D) -> Option<&E>
where
D: EnumDiscriminant<Enum = E>,
{
self.map.get(&discriminant.to_discriminants_enum())
}
get_mut() is very similar.
Note that my code doesn't handle duplicates but instead overwrites them, as it uses HashMap. However, you can easily create your own map that handles duplicates in another way.
Now that we have a clear picture in mind what the macro should generate, let's write it!
I decided to write it as a derive macro. You can use an attribute macro too, and even a function-like macro, but you must call it at the declaration site of your enum - because macros cannot inspect code other than the code the're applied to.
The enum will look like:
#[derive(denum::Enum)]
enum PaperType {
PageSize(f32, f32),
Color(String),
Weight(f32),
IsGlossy,
}
Usually, when my macro needs helper code, I put this code in crate and the macro in crate_macros, and reexports the macro from crate. So, the code in denum (besides the aforementioned Enum, EnumDiscriminant and Map):
pub use denum_macros::Enum;
denum_macros/src/lib.rs:
use proc_macro::TokenStream;
use quote::{format_ident, quote};
#[proc_macro_derive(Enum)]
pub fn derive_enum(item: TokenStream) -> TokenStream {
let item = syn::parse_macro_input!(item as syn::DeriveInput);
if item.generics.params.len() != 0 {
return syn::Error::new_spanned(
item.generics,
"`denum::Enum` does not work with generics currently",
)
.into_compile_error()
.into();
}
if item.generics.where_clause.is_some() {
return syn::Error::new_spanned(
item.generics.where_clause,
"`denum::Enum` does not work with `where` clauses currently",
)
.into_compile_error()
.into();
}
let (vis, name, variants) = match item {
syn::DeriveInput {
vis,
ident,
data: syn::Data::Enum(syn::DataEnum { variants, .. }),
..
} => (vis, ident, variants),
_ => {
return syn::Error::new_spanned(item, "`denum::Enum` works only with enums")
.into_compile_error()
.into()
}
};
let discriminants_mod_name = format_ident!("{}Discriminants", name);
let discriminants_enum_name = format_ident!("{}DiscriminantsEnum", name);
let mut discriminants_enum = Vec::new();
let mut discriminant_structs = Vec::new();
let mut enum_discriminant_impls = Vec::new();
for variant in variants {
let variant_name = variant.ident;
discriminant_structs.push(quote! {
#[derive(Clone, Copy)]
pub struct #variant_name;
});
let fields = match variant.fields {
syn::Fields::Named(_) => {
return syn::Error::new_spanned(
variant.fields,
"`denum::Enum` does not work with brace-style variants currently",
)
.into_compile_error()
.into()
}
syn::Fields::Unnamed(fields) => Some(fields.unnamed),
syn::Fields::Unit => None,
};
let value_destructuring = fields
.iter()
.flatten()
.enumerate()
.map(|(index, _)| format_ident!("v{}", index));
let value_destructuring = quote!((#(#value_destructuring,)*));
let value_builder = if fields.is_some() {
value_destructuring.clone()
} else {
quote!()
};
let value_type = fields.into_iter().flatten().map(|field| field.ty);
enum_discriminant_impls.push(quote! {
impl ::denum::EnumDiscriminant for #discriminants_mod_name::#variant_name {
type Enum = #name;
type Value = (#(#value_type,)*);
fn to_discriminants_enum(self) -> #discriminants_enum_name { #discriminants_enum_name::#variant_name }
fn to_enum(self, #value_destructuring: Self::Value) -> Self::Enum { Self::Enum::#variant_name #value_builder }
}
});
discriminants_enum.push(variant_name);
}
quote! {
#[allow(non_snake_case)]
#vis mod #discriminants_mod_name { #(#discriminant_structs)* }
const _: () = {
#[derive(PartialEq, Eq, Hash)]
pub enum #discriminants_enum_name { #(#discriminants_enum,)* }
impl ::denum::Enum for #name {
type DiscriminantsEnum = #discriminants_enum_name;
}
#(#enum_discriminant_impls)*
};
}
.into()
}
This macro has several flaws: it doesn't handle visibility modifiers and attributes correctly, for example. But in the general case, it works, and you can fine-tune it more.
If you want to also support brace-style variants, you can create a struct with the data (instead of the tuple we use currently).
Combining enum is possible if you'll not use a derive macro but a function-like macro, and invoke it on both enums, like:
denum::enums! {
enum A { ... }
enum B { ... }
}
Then the macro will have to combine the discriminants and use something like Either<A, B> when operating with the map.
Unfortunately, a couple of questions arise in that context:
should it be possible to use enum types only once? Or are there some which might be there multiple times?
what should happen if you insert a PageSize and there's already a PageSize in the dictionary?
All in all, a regular struct PaperType is much more suitable to properly model your domain. If you don't want to deal with Option, you can implement the Default trait to ensure that some sensible defaults are always available.
If you really, really want to go with a collection-style interface, the closest approximation would probably be a HashSet<PaperType>. You could then insert a value PaperType::PageSize.

Passing a data structure as an args to a proc macro attribute

I'm trying to create a macro that to use on a struct, in which you get another struct as an argument, then concatenate the structa fields. This the code of the macro
#[proc_macro_attribute]
pub fn cat(args: proc_macro::TokenStream, input: proc_macro::TokenStream) -> proc_macro:: TokenStream {
let mut base_struct = parse_macro_input!(input as ItemStruct);
let mut new_fields_struct = parse_macro_input!(args as ItemStruct);
if let syn::Fields::Named(ref mut base_fields) = base_struct.fields {
if let syn::Fields::Named(ref mut new_fields) = new_fields_struct.fields {
for field in new_fields.named.iter() {
base_fields.push(field.clone());
}
}
}
return quote! {
#base_struct
}.into();
}
Here's a basic example of what I want it to be used
struct new_fields{
field: usize,
}
#[cat(new_fields)]
struct base_struct{
base_field, usize,
}
However, it will just convert the word 'new_fields' into a TokenStream then fail to compile because it isn't a struct. Is there a way to 'pass' a struct to the macro as an argument without writing the code inside the the macro usage?
Is there a way to 'pass' a struct to the macro as an argument without writing the code inside the the macro usage?
No. Macros operate on tokens they are given and nothing else.
It's hard to give advice without knowing more detail, but the closest to what you've provided would be to have your macro generate the other struct, so that it knows the definition. You could perhaps pass it like this:
#[cat(
struct new_fields{
field: usize,
}
)]
struct base_struct{
base_field, usize,
}

Rust macro that counts and generates repetitive struct fields

I want to write a macro that generates varying structs from an integer argument. For example, make_struct!(3) might generate something like this:
pub struct MyStruct3 {
field_0: u32,
field_1: u32,
field_2: u32
}
What's the best way to transform that "3" literal into a number that I can use to generate code? Should I be using macro_rules! or a proc-macro?
You need a procedural attribute macro and quite a bit of pipework. An example implementation is on Github; bear in mind that it is pretty rough around the edges, but works pretty nicely to start with.
The aim is to have the following:
#[derivefields(u32, "field", 3)]
struct MyStruct {
foo: u32
}
transpile to:
struct MyStruct {
pub field_0: u32,
pub field_1: u32,
pub field_2: u32,
foo: u32
}
To do this, first, we're going to establish a couple of things. We're going to need a struct to easily store and retrieve our arguments:
struct MacroInput {
pub field_type: syn::Type,
pub field_name: String,
pub field_count: u64
}
The rest is pipework:
impl Parse for MacroInput {
fn parse(input: ParseStream) -> syn::Result<Self> {
let field_type = input.parse::<syn::Type>()?;
let _comma = input.parse::<syn::token::Comma>()?;
let field_name = input.parse::<syn::LitStr>()?;
let _comma = input.parse::<syn::token::Comma>()?;
let count = input.parse::<syn::LitInt>()?;
Ok(MacroInput {
field_type: field_type,
field_name: field_name.value(),
field_count: count.base10_parse().unwrap()
})
}
}
This defines syn::Parse on our struct and allows us to use syn::parse_macro_input!() to easily parse our arguments.
#[proc_macro_attribute]
pub fn derivefields(attr: TokenStream, item: TokenStream) -> TokenStream {
let input = syn::parse_macro_input!(attr as MacroInput);
let mut found_struct = false; // We actually need a struct
item.into_iter().map(|r| {
match &r {
&proc_macro::TokenTree::Ident(ref ident) if ident.to_string() == "struct" => { // react on keyword "struct" so we don't randomly modify non-structs
found_struct = true;
r
},
&proc_macro::TokenTree::Group(ref group) if group.delimiter() == proc_macro::Delimiter::Brace && found_struct == true => { // Opening brackets for the struct
let mut stream = proc_macro::TokenStream::new();
stream.extend((0..input.field_count).fold(vec![], |mut state:Vec<proc_macro::TokenStream>, i| {
let field_name_str = format!("{}_{}", input.field_name, i);
let field_name = Ident::new(&field_name_str, Span::call_site());
let field_type = input.field_type.clone();
state.push(quote!(pub #field_name: #field_type,
).into());
state
}).into_iter());
stream.extend(group.stream());
proc_macro::TokenTree::Group(
proc_macro::Group::new(
proc_macro::Delimiter::Brace,
stream
)
)
}
_ => r
}
}).collect()
}
The behavior of the modifier creates a new TokenStream and adds our fields first. This is extremely important; assume that the struct provided is struct Foo { bar: u8 }; appending last would cause a parse error due to a missing ,. Prepending allows us to not have to care about this, since a trailing comma in a struct is not a parse error.
Once we have this TokenStream, we successively extend() it with the generated tokens from quote::quote!(); this allows us to not have to build the token fragments ourselves. One gotcha is that the field name needs to be converted to an Ident (it gets quoted otherwise, which isn't something we want).
We then return this modified TokenStream as a TokenTree::Group to signify that this is indeed a block delimited by brackets.
In doing so, we also solved a few problems:
Since structs without named members (pub struct Foo(u32) for example) never actually have an opening bracket, this macro is a no-op for this
It will no-op any item that isn't a struct
It will also no-op structs without a member

Resources