How to write a recursive function in Python? - python-3.x

I have an undirected graph, and I want to iteratively remove each serial edge and replace it with a new edge. The weight of the new edge represents the number of spanning trees, and should be computed as follows: T_new = (1/a+b) * T_old, where a and b are the weights of the removed edges, T_new is the number of spanning trees in current iteration and T_old is the number of spanning trees in the previous iteration. This equation changes iteratively, as the graph changes, so if we have 4 iterations we will have 4 equations, each one is in terms of the previous one. We stop once the graph has no more serial edges. If the final graph is composed of 1 edge, the weight of that edge is the last T_new, and we will have a numerical value of T-old. Otherwise, we should have T_old in terms of T_new. Here is an attached image explaining what I said in case it is not well explained.
Here is the part of my code describing the problem :
** PS : I only need the part where the equation changes in every iteration, not the things to do to remove and add new edges and so on.here is an example : **
import networkx as nx
def fun2(G) :
L1= G.degree()
print(L1)
L= list(L1)
for x in L :
if G.degree(x[0]) == 2 : #if the adjacent edges to x[0] are serial
... do somthing(remove edges and add new one with new weight)
#T-new = 1/(a+b) T-old here the equation should change
def tau(G) : # it should return T_old which is the number of spanning trees of the initial graph
if G.number_of_edges() == 1 :
T_new = list(G.edges(data=True))[0][2]['weight']
T_old = (a+b) * t_new
else :
T_new = 1/(a+b) * tau(G)
T_old = (a+b) * t_new
return t_old

No recursion is needed, as we change the graph as we go. Here's a solution:
import networkx as nx
G = nx.Graph()
G.add_weighted_edges_from([(0,1,5),(0,2,10),(2,3,30)])
for node in list(G.nodes()):
if G.degree(node) == 2:
neighbors = list(G.neighbors(node))
a = G.get_edge_data(neighbors[0], node)['weight']
b = G.get_edge_data(neighbors[1], node)['weight']
w = (a * b) / (a + b)
G.add_edge(neighbors[0], neighbors[1], weight=w)
G.remove_node(node)

Related

How to check if graph contains a negative cycle but it can't be reached from source?

I want to check if my weighted graph has a negative cycle. For using bellman-ford algorithm, we need to select a source node, initialize all other distances to infinity and start relaxing n-1 times if number of vertices is n. My problem is that the unreachable nodes will have infinite distance all throughout and won't get changed in nth iteration also. So for an unreachable negative cycle we get wrong output.
def negative_cycle(adj, cost):
dist = [float('inf')] * n
prev = [None] * n
dist[0] = 0
for _ in range(n-1):
for u, edges in enumerate(adj):
for i, v in enumerate(edges):
if dist[v]>dist[u]+cost[u][i]:
dist[v]=dist[u]+cost[u][i]
prev[v]=u
for u, edges in enumerate(adj):
for i, v in enumerate(edges):
if dist[v]>dist[u]+cost[u][i]:
return 1
return 0
You should run it for each connected component. For this, implement your function in the way that it gets a vertex v (In your function, it's always vertex 0), then implement a loop and for each vertex which has distance set to infinity, call your function on that vertex.
If you don't care about the shortest path and simply want to detect a negative cycle, you can set the initial distance of all vertices to 0. This has the same effect as creating an imaginary source s and connecting s to all other vertices with weight 0 edges.
Your code would then look like the one below (Probably, I don't know Python, so my syntax could be incorrect).
def negative_cycle(adj, cost):
dist = [0] * n
prev = [None] * n
for _ in range(n-1):
for u, edges in enumerate(adj):
for i, v in enumerate(edges):
if dist[v]>dist[u]+cost[u][i]:
dist[v]=dist[u]+cost[u][i]
prev[v]=u
for u, edges in enumerate(adj):
for i, v in enumerate(edges):
if dist[v]>dist[u]+cost[u][i]:
return 1
return 0

Boundary enclosing a given set of points

I am having a bit of a problem with an algorithm that I am currently using. I wanted it to make a boundary.
Here is an example of the current behavior:
Here is an MSPaint example of wanted behavior:
Current code of Convex Hull in C#:https://hastebin.com/dudejesuja.cs
So here are my questions:
1) Is this even possible?
R: Yes
2) Is this even called Convex Hull? (I don't think so)
R: Nope it is called boundary, link: https://www.mathworks.com/help/matlab/ref/boundary.html
3) Will this be less performance friendly than a conventional convex hull?
R: Well as far as I researched it should be the same performance
4) Example of this algorithm in pseudo code or something similar?
R: Not answered yet or I didn't find a solution yet
Here is some Python code that computes the alpha-shape (concave hull) and keeps only the outer boundary. This is probably what matlab's boundary does inside.
from scipy.spatial import Delaunay
import numpy as np
def alpha_shape(points, alpha, only_outer=True):
"""
Compute the alpha shape (concave hull) of a set of points.
:param points: np.array of shape (n,2) points.
:param alpha: alpha value.
:param only_outer: boolean value to specify if we keep only the outer border
or also inner edges.
:return: set of (i,j) pairs representing edges of the alpha-shape. (i,j) are
the indices in the points array.
"""
assert points.shape[0] > 3, "Need at least four points"
def add_edge(edges, i, j):
"""
Add an edge between the i-th and j-th points,
if not in the list already
"""
if (i, j) in edges or (j, i) in edges:
# already added
assert (j, i) in edges, "Can't go twice over same directed edge right?"
if only_outer:
# if both neighboring triangles are in shape, it's not a boundary edge
edges.remove((j, i))
return
edges.add((i, j))
tri = Delaunay(points)
edges = set()
# Loop over triangles:
# ia, ib, ic = indices of corner points of the triangle
for ia, ib, ic in tri.vertices:
pa = points[ia]
pb = points[ib]
pc = points[ic]
# Computing radius of triangle circumcircle
# www.mathalino.com/reviewer/derivation-of-formulas/derivation-of-formula-for-radius-of-circumcircle
a = np.sqrt((pa[0] - pb[0]) ** 2 + (pa[1] - pb[1]) ** 2)
b = np.sqrt((pb[0] - pc[0]) ** 2 + (pb[1] - pc[1]) ** 2)
c = np.sqrt((pc[0] - pa[0]) ** 2 + (pc[1] - pa[1]) ** 2)
s = (a + b + c) / 2.0
area = np.sqrt(s * (s - a) * (s - b) * (s - c))
circum_r = a * b * c / (4.0 * area)
if circum_r < alpha:
add_edge(edges, ia, ib)
add_edge(edges, ib, ic)
add_edge(edges, ic, ia)
return edges
If you run it with the following test code you will get this figure, which looks like what you need:
from matplotlib.pyplot import *
# Constructing the input point data
np.random.seed(0)
x = 3.0 * np.random.rand(2000)
y = 2.0 * np.random.rand(2000) - 1.0
inside = ((x ** 2 + y ** 2 > 1.0) & ((x - 3) ** 2 + y ** 2 > 1.0)
points = np.vstack([x[inside], y[inside]]).T
# Computing the alpha shape
edges = alpha_shape(points, alpha=0.25, only_outer=True)
# Plotting the output
figure()
axis('equal')
plot(points[:, 0], points[:, 1], '.')
for i, j in edges:
plot(points[[i, j], 0], points[[i, j], 1])
show()
EDIT: Following a request in a comment, here is some code that "stitches" the output edge set into sequences of consecutive edges.
def find_edges_with(i, edge_set):
i_first = [j for (x,j) in edge_set if x==i]
i_second = [j for (j,x) in edge_set if x==i]
return i_first,i_second
def stitch_boundaries(edges):
edge_set = edges.copy()
boundary_lst = []
while len(edge_set) > 0:
boundary = []
edge0 = edge_set.pop()
boundary.append(edge0)
last_edge = edge0
while len(edge_set) > 0:
i,j = last_edge
j_first, j_second = find_edges_with(j, edge_set)
if j_first:
edge_set.remove((j, j_first[0]))
edge_with_j = (j, j_first[0])
boundary.append(edge_with_j)
last_edge = edge_with_j
elif j_second:
edge_set.remove((j_second[0], j))
edge_with_j = (j, j_second[0]) # flip edge rep
boundary.append(edge_with_j)
last_edge = edge_with_j
if edge0[0] == last_edge[1]:
break
boundary_lst.append(boundary)
return boundary_lst
You can then go over the list of boundary lists and append the points corresponding to the first index in each edge to get a boundary polygon.
I would use a different approach to solve this problem. Since we are working with a 2-D set of points, it is straightforward to compute the bounding rectangle of the points’ region. Then I would divide this rectangle into “cells” by horizontal and vertical lines, and for each cell simply count the number of pixels located within its bounds. Since each cell can have only 4 adjacent cells (adjacent by cell sides), then the boundary cells would be the ones that have at least one empty adjacent cell or have a cell side located at the bounding rectangle boundary. Then the boundary would be constructed along boundary cell sides. The boundary would look like a “staircase”, but choosing a smaller cell size would improve the result. As a matter of fact, the cell size should be determined experimentally; it could not be too small, otherwise inside the region may appear empty cells. An average distance between the points could be used as a lower boundary of the cell size.
Consider using an Alpha Shape, sometimes called a Concave Hull. https://en.wikipedia.org/wiki/Alpha_shape
It can be built from the Delaunay triangulation, in time O(N log N).
As pointed out by most previous experts, this might not be a convex hull but a concave hull, or an Alpha Shape in other words. Iddo provides a clean Python code to acquire this shape. However, you can also directly utilize some existing packages to realize that, perhaps with a faster speed and less computational memory if you are working with a large number of point clouds.
[1] Alpha Shape Toolbox: a toolbox for generating n-dimensional alpha shapes.
https://plotly.com/python/v3/alpha-shapes/
[2] Plotly: It can can generate a Mesh3d object, that depending on a key-value can be the convex hull of that set, its Delaunay triangulation, or an alpha set.
https://plotly.com/python/v3/alpha-shapes/
Here is the JavaScript code that builds concave hull: https://github.com/AndriiHeonia/hull Probably you can port it to C#.
One idea is creating triangles, a mesh, using the point cloud, perhaps through Delanuay triangulation,
and filling those triangles with a color then run level set, or active contour segmentation which will find the outer boundary of the shape whose color is now different then the outside "background" color.
https://xphilipp.developpez.com/contribuez/SnakeAnimation.gif
The animation above did not go all the way but many such algorithms can be configured to do that.
Note: The triangulation alg has to be tuned so that it doesn't merely create a convex hull - for example removing triangles with too large angles and sides from the delanuay result. A prelim code could look like
from scipy.spatial import Delaunay
points = np.array([[13.43, 12.89], [14.44, 13.86], [13.67, 15.87], [13.39, 14.95],\
[12.66, 13.86], [10.93, 14.24], [11.69, 15.16], [13.06, 16.24], [11.29, 16.35],\
[10.28, 17.33], [10.12, 15.49], [9.03, 13.76], [10.12, 14.08], [9.07, 15.87], \
[9.6, 16.68], [7.18, 16.19], [7.62, 14.95], [8.39, 16.79], [8.59, 14.51], \
[8.1, 13.43], [6.57, 11.59], [7.66, 11.97], [6.94, 13.86], [6.53, 14.84], \
[5.48, 12.84], [6.57, 12.56], [5.6, 11.27], [6.29, 10.08], [7.46, 10.45], \
[7.78, 7.21], [7.34, 8.72], [6.53, 8.29], [5.85, 8.83], [5.56, 10.24], [5.32, 7.8], \
[5.08, 9.86], [6.01, 5.75], [6.41, 7.48], [8.19, 5.69], [8.23, 4.72], [6.85, 6.34], \
[7.02, 4.07], [9.4, 3.2], [9.31, 4.99], [7.86, 3.15], [10.73, 2.82], [10.32, 4.88], \
[9.72, 1.58], [11.85, 5.15], [12.46, 3.47], [12.18, 1.58], [11.49, 3.69], \
[13.1, 4.99], [13.63, 2.61]])
tri = Delaunay(points,furthest_site=False)
res = []
for t in tri.simplices:
A,B,C = points[t[0]],points[t[1]],points[t[2]]
e1 = B-A; e2 = C-A
num = np.dot(e1, e2)
n1 = np.linalg.norm(e1); n2 = np.linalg.norm(e2)
denom = n1 * n2
d1 = np.rad2deg(np.arccos(num/denom))
e1 = C-B; e2 = A-B
num = np.dot(e1, e2)
denom = np.linalg.norm(e1) * np.linalg.norm(e2)
d2 = np.rad2deg(np.arccos(num/denom))
d3 = 180-d1-d2
res.append([n1,n2,d1,d2,d3])
res = np.array(res)
m = res[:,[0,1]].mean()*res[:,[0,1]].std()
mask = np.any(res[:,[2,3,4]] > 110) & (res[:,0] < m) & (res[:,1] < m )
plt.triplot(points[:,0], points[:,1], tri.simplices[mask])
Then fill with color and segment.

Euler beam, solving differential equation in python

I must solve the Euler Bernoulli differential beam equation which is:
w’’’’(x) = q(x)
and boundary conditions:
w(0) = w(l) = 0
and
w′′(0) = w′′(l) = 0
The beam is as shown on the picture below:
beam
The continious force q is 2N/mm.
I have to use shooting method and scipy.integrate.odeint() func.
I can't even manage to start as i do not understand how to write the differential equation as a system of equation
Can someone who understands solving of differential equations with boundary conditions in python please help!
Thanks :)
The shooting method
To solve the fourth order ODE BVP with scipy.integrate.odeint() using the shooting method you need to:
1.) Separate the 4th order ODE into 4 first order ODEs by substituting:
u = w
u1 = u' = w' # 1
u2 = u1' = w'' # 2
u3 = u2' = w''' # 3
u4 = u3' = w'''' = q # 4
2.) Create a function to carry out the derivation logic and connect that function to the integrate.odeint() like this:
function calc(u, x , q)
{
return [u[1], u[2], u[3] , q]
}
w = integrate.odeint(calc, [w(0), guess, w''(0), guess], xList, args=(q,))
Explanation:
We are sending the boundary value conditions to odeint() for x=0 ([w(0), w'(0) ,w''(0), w'''(0)]) which calls the function calc which returns the derivatives to be added to the current state of w. Note that we are guessing the initial boundary conditions for w'(0) and w'''(0) while entering the known w(0)=0 and w''(0)=0.
Addition of derivatives to the current state of w occurs like this:
# the current w(x) value is the previous value plus the current change of w in dx.
w(x) = w(x-dx) + dw/dx
# others are calculated the same
dw(x)/dx = dw(x-dx)/dx + d^2w(x)/dx^2
# etc.
This is why we are returning values [u[1], u[2], u[3] , q] instead of [u[0], u[1], u[2] , u[3]] from the calc function, because u[1] is the first derivative so we add it to w, etc.
3.) Now we are able to set up our shooting method. We will be sending different initial boundary values for w'(0) and w'''(0) to odeint() and then check the end result of the returned w(x) profile to determine how close w(L) and w''(L) got to 0 (the known boundary conditions).
The program for the shooting method:
# a function to return the derivatives of w
def returnDerivatives(u, x, q):
return [u[1], u[2], u[3], q]
# a shooting funtion which takes in two variables and returns a w(x) profile for x=[0,L]
def shoot(u2, u4):
# the number of x points to calculate integration -> determines the size of dx
# bigger number means more x's -> better precision -> longer execution time
xSteps = 1001
# length of the beam
L= 1.0 # 1m
xSpace = np.linspace(0, L, xSteps)
q = 0.02 # constant [N/m]
# integrate and return the profile of w(x) and it's derivatives, from x=0 to x=L
return odeint(returnDerivatives, [ 0, u2, 0, u4] , xSpace, args=(q,))
# the tolerance for our results.
tolerance = 0.01
# how many numbers to consider for u2 and u4 (the guess boundary conditions)
u2_u4_maxNumbers = 1327 # bigger number, better precision, slower program
# you can also divide into separate variables like u2_maxNum and u4_maxNum
# these are already tested numbers (the best results are somewhere in here)
u2Numbers = np.linspace(-0.1, 0.1, u2_u4_maxNumbers)
# the same as above
u4Numbers = np.linspace(-0.5, 0.5, u2_u4_maxNumbers)
# result list for extracted values of each w(x) profile => [u2Best, u4Best, w(L), w''(L)]
# which will help us determine if the w(x) profile is inside tolerance
resultList = []
# result list for each U (or w(x) profile) => [w(x), w'(x), w''(x), w'''(x)]
resultW = []
# start generating numbers for u2 and u4 and send them to odeint()
for u2 in u2Numbers:
for u4 in u4Numbers:
U = []
U = shoot(u2,u4)
# get only the last row of the profile to determine if it passes tolerance check
result = U[len(U)-1]
# only check w(L) == 0 and w''(L) == 0, as those are the known boundary cond.
if (abs(result[0]) < tolerance) and (abs(result[2]) < tolerance):
# if the result passed the tolerance check, extract some values from the
# last row of the w(x) profile which we will need later for comaprisons
resultList.append([u2, u4, result[0], result[2]])
# add the w(x) profile to the list of profiles that passed the tolerance
# Note: the order of resultList is the same as the order of resultW
resultW.append(U)
# go through the resultList (list of extracted values from last row of each w(x) profile)
for i in range(len(resultList)):
x = resultList[i]
# both boundary conditions are 0 for both w(L) and w''(L) so we will simply add
# the two absolute values to determine how much the sum differs from 0
y = abs(x[2]) + abs(x[3])
# if we've just started set the least difference to the current
if i == 0:
minNum = y # remember the smallest difference to 0
index = 0 # remember index of best profile
elif y < minNum:
# current sum of absolute values is smaller
minNum = y
index = i
# print out the integral for w(x) over the beam
sum = 0
for i in resultW[index]:
sum = sum + i[0]
print("The integral of w(x) over the beam is:")
print(sum/1001) # sum/xSteps
This outputs:
The integral of w(x) over the beam is:
0.000135085272117
To print out the best profile for w(x) that we found:
print(resultW[index])
which outputs something like:
# w(x) w'(x) w''(x) w'''(x)
[[ 0.00000000e+00 7.54147813e-04 0.00000000e+00 -9.80392157e-03]
[ 7.54144825e-07 7.54142917e-04 -9.79392157e-06 -9.78392157e-03]
[ 1.50828005e-06 7.54128237e-04 -1.95678431e-05 -9.76392157e-03]
...,
[ -4.48774290e-05 -8.14851572e-04 1.75726275e-04 1.01560784e-02]
[ -4.56921910e-05 -8.14670764e-04 1.85892353e-04 1.01760784e-02]
[ -4.65067671e-05 -8.14479780e-04 1.96078431e-04 1.01960784e-02]]
To double check the results from above we will also solve the ODE using the numerical method.
The numerical method
To solve the problem using the numerical method we first need to solve the differential equations. We will get four constants which we need to find with the help of the boundary conditions. The boundary conditions will be used to form a system of equations to help find the necessary constants.
For example:
w’’’’(x) = q(x);
means that we have this:
d^4(w(x))/dx^4 = q(x)
Since q(x) is constant after integrating we have:
d^3(w(x))/dx^3 = q(x)*x + C
After integrating again:
d^2(w(x))/dx^2 = q(x)*0.5*x^2 + C*x + D
After another integration:
dw(x)/dx = q(x)/6*x^3 + C*0.5*x^2 + D*x + E
And finally the last integration yields:
w(x) = q(x)/24*x^4 + C/6*x^3 + D*0.5*x^2 + E*x + F
Then we take a look at the boundary conditions (now we have expressions from above for w''(x) and w(x)) with which we make a system of equations to solve the constants.
w''(0) => 0 = q(x)*0.5*0^2 + C*0 + D
w''(L) => 0 = q(x)*0.5*L^2 + C*L + D
This gives us the constants:
D = 0 # from the first equation
C = - 0.01 * L # from the second (after inserting D=0)
After repeating the same for w(0)=0 and w(L)=0 we obtain:
F = 0 # from first
E = 0.01/12.0 * L^3 # from second
Now, after we have solved the equation and found all of the integration constants we can make the program for the numerical method.
The program for the numerical method
We will make a FOR loop to go through the entire beam for every dx at a time and sum up (integrate) w(x).
L = 1.0 # in meters
step = 1001.0 # how many steps to take (dx)
q = 0.02 # constant [N/m]
integralOfW = 0.0; # instead of w(0) enter the boundary condition value for w(0)
result = []
for i in range(int(L*step)):
x= i/step
w = (q/24.0*pow(x,4) - 0.02/12.0*pow(x,3) + 0.01/12*pow(L,3)*x)/step # current w fragment
# add up fragments of w for integral calculation
integralOfW += w
# add current value of w(x) to result list for plotting
result.append(w*step);
print("The integral of w(x) over the beam is:")
print(integralOfW)
which outputs:
The integral of w(x) over the beam is:
0.00016666652805511192
Now to compare the two methods
Result comparison between the shooting method and the numerical method
The integral of w(x) over the beam:
Shooting method -> 0.000135085272117
Numerical method -> 0.00016666652805511192
That's a pretty good match, now lets see check the plots:
From the plots it's even more obvious that we have a good match and that the results of the shooting method are correct.
To get even better results for the shooting method increase xSteps and u2_u4_maxNumbers to bigger numbers and you can also narrow down the u2Numbers and u4Numbers to the same set size but a smaller interval (around the best results from previous program runs). Keep in mind that setting xSteps and u2_u4_maxNumbers too high will cause your program to run for a very long time.
You need to transform the ODE into a first order system, setting u0=w one possible and usually used system is
u0'=u1,
u1'=u2,
u2'=u3,
u3'=q(x)
This can be implemented as
def ODEfunc(u,x): return [ u[1], u[2], u[3], q(x) ]
Then make a function that shoots with experimental initial conditions and returns the components of the second boundary condition
def shoot(u01, u03): return odeint(ODEfunc, [0, u01, 0, u03], [0, l])[-1,[0,2]]
Now you have a function of two variables with two components and you need to solve this 2x2 system with the usual methods. As the system is linear, the shooting function is linear as well and you only need to find the coefficients and solve the resulting linear system.

Generate a random point on an elliptical curve

I'm writing a program which randomly chooses two integers within a certain interval. I also wrote a class (which I didn't add below) which uses two numbers 'a' and 'b' and creates an elliptical curve of the form:
y^2 = x^3 + ax + b
I've written the following to create the two random numbers.
def numbers():
n = 1
while n>0:
a = random.randint(-100,100)
b = random.randint(-100,100)
if -16 * (4 * a ** 3 + 27 * b ** 2) != 0:
result = [a,b]
return result
n = n+1
Now I would like to generate a random point on this elliptical curve. How do I do that?
The curve has an infinite length, as for every y ϵ ℝ there is at least one x ϵ ℝ so that (x, y) is on the curve. So if we speak of a random point on the curve we cannot hope to have a homogeneous distribution of the random point over the whole curve.
But if that is not important, you could take a random value for y within some range, and then calculate the roots of the following function:
f(x) = x3 + ax + b - y2
This will result in three roots, of which possibly two are complex (not real numbers). You can take a random real root from that. This will be the x coordinate for the random point.
With the help of numpy, getting the roots is easy, so this is the function for getting a random point on the curve, given values for a and b:
def randomPoint(a, b):
y = random.randint(-100,100)
# Get roots of: f(x) = x^3 + ax + b - y^2
roots = numpy.roots([1, 0, a, b - y**2])
# 3 roots are returned, but ignore potential complex roots
# At least one will be real
roots = [val.real for val in roots if val.imag == 0]
# Choose a random root among those real root(s)
x = random.choice(roots)
return [x, y]
See it run on repl.it.

How to start this "Number Density of Particles" homework in Python?

Part 2 - Determination of Number Density of Particles
If we say that q is the production rate of particles of a specific size, then in an interval dt the total number of particles produced is just q dt. To make things concrete in what follows, please adopt the case:
a = 0.9amax
q = 100000
Consider this number of particles at some distance r from the nucleus. The number density of particles will be number divided by volume, so to find number density we must compute the volume of a shell of radius r with a thickness that corresponds to how far the particles will travel in our time interval dt. Obviously that’s just the velocity of the particle at radius r times the time interval v(r) dt, so the volume of our shell is:
Volume = Shell Surface Area×Shell Thickness = 4πr2v(r)dt
Therefore, the number density, n, at radius r is:
n(r) = q dt /4πr2v(r)dt = q /4πr2v(r) (equation5)
You will note that our expression above will have a singularity for the number density of particles right at the surface of the nucleus, since at that position the outward velocity, v(R), is 0. Obviously this is an indication that we expect the particle density n to drop very rapidly as the dust is accelerated away from the surface. For now, let’s not worry about this point — we don’t need it later — and just graph how the number density varies with distance from the nucleus, starting with the 1st point after the surface value
• Evaluate Eqaution 5 for all calculated points using the parameters for q and a given above.
• Make a log-log graph of the number density versus radius. You should find that, after terminal velocity is achieved, the number density decreases as r−2, corresponding to a slope of -2 on a log-log plot
Current code:
% matplotlib inline
import numpy as np
import matplotlib.pyplot as pl
R = 2000 #Nucleus Radius (m)
GM_n = 667 #Nucleus Mass (m^3 s^-2)
Q = 7*10**27 #Gas Production Rate (molecules s^-1)
V_g = 1000 #Gas Velocity (m s^-1)
C_D = 4 #Drag Coefficient Dimensionless
p_d = 500 #Grain Density (kg m^-3)
M_h2o = .01801528/(6.022*10**23) #Mass of a water molecule (g/mol)
pi = np.pi
p_g_R = M_h2o*Q/(4*np.pi*R**2*V_g)
print ('Gas Density at the comets nucleus: ', p_g_R)
a_max = (3/8)*C_D*(V_g**2)*p_g_R*(1/p_d)*((R**2)/GM_n)
print ('Radius of Maximum Size Particle: ', a_max)
def drag_force(C_D,V_g,p_g_R,pi,a,v):
drag = .5*C_D*((V_g - v)**2)*p_g_R*pi*a**2
return drag
def grav_force(GM_n,M_d,r):
grav = -(GM_n*M_d)/(r**2)
return grav
def p_g_r(p_g_R,R,r):
p_g_r = p_g_R*(R**2/r**2)
return p_g_r
dt = 1
tfinal = 100000
v0 = 0
t = np.arange(0.,tfinal+dt,dt)
npoints = len(t)
r = np.zeros(npoints)
v = np.zeros(npoints)
r[0]= R
v[0]= v0
a = np.array([0.9,0.5,0.1,0.01,0.001])*a_max
for j in range(len(a)):
M_d = 4/3*pi*a[j]**3*p_d
for i in range(len(t)-1):
rmid = r[i] + v[i]*dt/2.
vmid = v[i] + (grav_force(GM_n,M_d,r[i])+drag_force(C_D,V_g,p_g_r(p_g_R,R,r[i]),pi,a[j],v[i]))*dt/2.
r[i+1] = r[i] + vmid*dt
v[i+1] = v[i] + (grav_force(GM_n,M_d,rmid)+drag_force(C_D,V_g,p_g_r(p_g_R,R,rmid),pi,a[j],vmid))*dt
pl.plot(r,v)
pl.show()
a_2= 0.9*a_max
q = 100000
I have never programmed anything like this before, my class is very difficult for me and I don't understand it. I have developed the above code with the help of the professor, and I am nearly out of time to finish this project. I just want help understanding the problem.
How do I find v(r) when I only have v(t), r(t)?
What do I do to calculate the r values and what r values do I even use?
You have v as a known function of time and also r as another known function of time. You can invert these to get t vs. v and t vs. r. To get v as a function of r, eliminate t.

Resources