Does hazelcast jet stream stores data in nodes along with aggregation - hazelcast-jet

I am using hazelcast jet to aggreagte(sum) stream of data
Source is kafka where i receive integer and jet stream simply adds each incoming number.
I have few questions
1. When it receives each number along with a it saves the data in IMap, how can i access that snapshot?

#Abhishek, Hazelcast-Jet takes snapshots if you configure it, and not with each number, with a time period. If you want to access map, you cannot & even if you access, the data stored in that map uses an internal data structure, you cannot just view your numbers there.
If you can share what kind of information you're trying to get, I can help you more. (Along with your job definition to understand it a bit if possible)

Related

Latency in IMap.get(key) when the object being retrieved is heavy

we have a map of custom object key to custom value Object(complex Object). We set the in-memory-format as OBJECT. But IMap.get is taking more time to get the value when the retrieved object size is big. We cannot afford latency here and this is required for further processing. IMap.get is called in jvm where cluster is started. Do we have a way to get the objects quickly irrespective of its size?
This is partly the price you pay for in-memory-format==OBJECT
To confirm, try in-memory-format==BINARY and compare the difference.
Store and retrieve are slower with OBJECT, some queries will be faster. If you run enough of those queries the penalty is justified.
If you do get(X) and the value is stored deserialized (OBJECT), the following sequence occurs
1 - the object it serialized from object to byte[]
2 - the byte array is sent to the caller, possibly across the network
3 - the object is deserialized by the caller, byte[] to object.
If you change to store serialized (BINARY), step 1 isn't need.
If the caller is the same process, step 2 isn't needed.
If you can, it's worth upgrading (latest is 5.1.3) as there are some newer options that may perform better. See this blog post explaining.
You also don't necessarily have to return the entire object to the caller. A read-only EntryProcessor can extract part of the data you need to return across the network. A smaller network packet will help, but if the cost is in the serialization then the difference may not be remarkable.
If you're retrieving a non-local map entry (either because you're using client-server deployment model, or an embedded deployment with multiple nodes so that some retrievals are remote), then a retrieval is going to require moving data across the network. There is no way to move data across the network that isn't affected by object size; so the solution is to find a way to make the objects more compact.
You don't mention what serialization method you're using, but the default Java serialization is horribly inefficient ... any other option would be an improvement. If your code is all Java, IdentifiedDataSerializable is the most performant. See the following blog for some numbers:
https://hazelcast.com/blog/comparing-serialization-options/
Also, if your data is stored in BINARY format, then it's stored in serialized form (whatever serialization option you've chosen), so at retrieval time the data is ready to be put on the wire. By storing in OBJECT form, you'll have to perform the serialization at retrieval time. This will make your GET operation slower. The trade-off is that if you're doing server-side compute (using the distributed executor service, EntryProcessors, or Jet pipelines), the server-side compute is faster if the data is in OBJECT format because it doesn't have to deserialize the data to access the data fields. So if you aren't using those server-side compute capabilities, you're better off with BINARY storage format.
Finally, if your objects are large, do you really need to be retrieving the entire object? Using the SQL API, you can do a SELECT of just certain fields in the object, rather than retrieving the entire object. (You can also do this with Projections and the older Predicate API but the SQL method is the preferred way to do this). If the client code doesn't need the entire object, selecting certain fields can save network bandwidth on the object transfer.

Transparent Streaming & Batch processing

I'm still quite new to the world of stream and batch processing and trying to understnad concepts and speach. It is admitedly very possible that the answer to my question well known, easy to find or even answered a hundred times here at SO, but I was not able to find it.
The background:
I am working in a big scientific project (nuclear fusion research), and we are producing tons of measurement data during experiment runs. Those data are mostly streams of samples tagged with a nanosecond timestamp, where samples can be anything from a single by ADC value, via an array of such, via deeply structured data (with up to hundreds of entries from 1 bit booleans to 64bit double precision floats) to raw HD video frames or even string text messages. If I understand the common terminologies right, I would regard our data as "tabular data", for the most part.
We are working with mostly selfmade software solutions from data acquisition over simple online (streaming) analysis (like scaling, subsampling and such) to our own data sotrage, management and access facilities.
In view of the scale of the operation and the effort for maintaining all those implementations, we are investigating the possibilities to use standard frameworks and tools for more of our tasks.
My question:
In particular at this stage, we are facing the need for more and more sofisticated (automated and manual) data analytics on live/online/realtime data as well as "after the fact" offline/batch analytics of "historic" data. In this endavor, I am trying to understand if and how existing analytics frameworks like Spark, Flink, Storm etc. (possibly supported by message queues like Kafka, Pulsar,...) can support a scenario, where
data is flowing/streamed into the platform/framework, attached an identifier like a URL or an ID or such
the platform interacts with integrated or external storage to persist the streaming data (for years), associated with the identifier
analytics processes can now transparently query/analyse data addressed by an identifier and an arbitrary (open or closed) time window, and the framework suplies data batches/samples for the analysis either from backend storage or coming in live from data acquisition
Simply streaming the online data into storage and querying from there seems no option as we need both raw and analysed data for live monitoring and realtime feedback control of the experiment.
Also, letting the user query either a live input signal or a historic batch from storage differently would not be ideal, as our physicists mostly are no data scientists and we would like to keep such "technicalities" away from them and idealy the exact same algorithms should be used for analysing new real time data and old stored data from previous experiments.
Sitenotes:
we are talking about peek data loads in the range of 10th of gigabits per second coming in bursts of increasing length of seconds up to minutes - could this be handled by the candidates?
we are using timestamps in nanosecond resolution, even thinking about pico - this poses some limitations on the list of possible candidates if I unserstand correctly?
I would be very greatfull if anyone would be able to understand my question and to shed some light on the topic for me :-)
Many Thanks and kind regards,
Beppo
I don't think anyone can say "yes, framework X can definitely handle your workload", because it depends a lot on what you need out of your message processing, e.g. regarding messaging reliability, and how your data streams can be partitioned.
You may be interested in BenchmarkingDistributedStreamProcessingEngines. The paper is using versions of Storm/Flink/Spark that are a few years old (looks like they were released in 2016), but maybe the authors would be willing to let you use their benchmark to evaluate newer versions of the three frameworks?
A very common setup for streaming analytics is to go data source -> Kafka/Pulsar -> analytics framework -> long term data store. This decouples processing from data ingest, and lets you do stuff like reprocessing historical data as if it were new.
I think the first step for you should be to see if you can get the data volume you need through Kafka/Pulsar. Either generate a test set manually, or grab some data you think could be representative from your production environment, and see if you can put it through Kafka/Pulsar at the throughput/latency you need.
Remember to consider partitioning of your data. If some of your data streams could be processed independently (i.e. ordering doesn't matter), you should not be putting them in the same partitions. For example, there is probably no reason to mix sensor measurements and the video feed streams. If you can separate your data into independent streams, you are less likely to run into bottlenecks both in Kafka/Pulsar and the analytics framework. Separate data streams would also allow you to parallelize processing in the analytics framework much better, as you could run e.g. video feed and sensor processing on different machines.
Once you know whether you can get enough throughput through Kafka/Pulsar, you should write a small example for each of the 3 frameworks. To start, I would just receive and drop the data from Kafka/Pulsar, which should let you know early whether there's a bottleneck in the Kafka/Pulsar -> analytics path. After that, you can extend the example to do something interesting with the example data, e.g. do a bit of processing like what you might want to do in production.
You also need to consider which kinds of processing guarantees you need for your data streams. Generally you will pay a performance penalty for guaranteeing at-least-once or exactly-once processing. For some types of data (e.g. the video feed), it might be okay to occasionally lose messages. Once you decide on a needed guarantee, you can configure the analytics frameworks appropriately (e.g. disable acking in Storm), and try benchmarking on your test data.
Just to answer some of your questions more explicitly:
The live data analysis/monitoring use case sounds like it fits the Storm/Flink systems fairly well. Hooking it up to Kafka/Pulsar directly, and then doing whatever analytics you need sounds like it could work for you.
Reprocessing of historical data is going to depend on what kind of queries you need to do. If you simply need a time interval + id, you can likely do that with Kafka plus a filter or appropriate partitioning. Kafka lets you start processing at a specific timestamp, and if you data is partitioned by id or you filter it as the first step in your analytics, you could start at the provided timestamp and stop processing when you hit a message outside the time window. This only applies if the timestamp you're interested in is when the message was added to Kafka though. I also don't believe Kafka supports below-millisecond resolution on the timestamps it generates.
If you need to do more advanced queries (e.g. you need to look at timestamps generated by your sensors), you could look at using Cassandra or Elasticsearch or Solr as your permanent data store. You will also want to investigate how to get the data from those systems back into your analytics system. For example, I believe Spark ships with a connector for reading from Elasticsearch, while Elasticsearch provides a connector for Storm. You should check whether such a connector exists for your data store/analytics system combination, or be willing to write your own.
Edit: Elaborating to answer your comment.
I was not aware that Kafka or Pulsar supported timestamps specified by the user, but sure enough, they both do. I don't see that Pulsar supports sub-millisecond timestamps though?
The idea you describe can definitely be supported by Kafka.
What you need is the ability to start a Kafka/Pulsar client at a specific timestamp, and read forward. Pulsar doesn't seem to support this yet, but Kafka does.
You need to guarantee that when you write data into a partition, they arrive in order of timestamp. This means that you are not allowed to e.g. write first message 1 with timestamp 10, and then message 2 with timestamp 5.
If you can make sure you write messages in order to Kafka, the example you describe will work. Then you can say "Start at timestamp 'last night at midnight'", and Kafka will start there. As live data comes in, it will receive it and add it to the end of its log. When the consumer/analytics framework has read all the data from last midnight to current time, it will start waiting for new (live) data to arrive, and process it as it comes in. You can then write custom code in your analytics framework to make sure it stops processing when it reaches the first message with timestamp 'tomorrow night'.
With regard to support of sub-millisecond timestamps, I don't think Kafka or Pulsar will support it out of the box, but you can work around it reasonably easily. Just put the sub-millisecond timestamp in the message as a custom field. When you want to start at e.g. timestamp 9ms 10ns, you ask Kafka to start at 9ms, and use a filter in the analytics framework to drop all messages between 9ms and 9ms 10ns.
Allow me to add the following suggestions on how Apache Pulsar might help address some of your requirements. Food for thought as it were.
"data is flowing/streamed into the platform/framework, attached an identifier like a URL or an ID or such"
You might want to look at Pulsar Functions, which allows you to write simple functions (In Java or Python) that gets executed on each individual message that is published to a topic. They are ideal for this type of data augmentation use case.
the platform interacts with integrated or external storage to persist the streaming data (for years), associated with the identifier
Pulsar has recently added tiered-storage, that allows you to retain event streams in S3, Azure Blob Store, or Google Cloud storage. This would allow you to keep the data for years in a cheap and reliable data store
analytics processes can now transparently query/analyse data addressed by an identifier and an arbitrary (open or closed) time window, and the framework suplies data batches/samples for the analysis either from backend storage or coming in live from data acquisition
Apache Pulsar has also added integration with the Presto query engine, which would allow you to query the data over a given time period (including data from tiered-storage) and place it into a topic for processing.

How does Spark deal with JDBC data in relation to time?

I am trying to sync my Spark database on S3 with an older Oracle database via daily ETL Spark job. I am trying to understand just what Spark does when it connects to a RDS like Oracle to fetch data.
Does it only grab the data that at the time of Spark's request to the DB (i.e. if it fetches data from an Oracle DB at 2/2 17:00:00, it will only grab data UP to that point in time)? Essentially saying that any new data or updates at 2/2 17:00:01 will not be obtained from the data fetch?
Well, it depends. In general you have to assume that this behavior is non-deterministic, unless explicitly ensured by your application and database design.
By default Spark will fetch data every time you execute an action on the corresponding Spark dataset. It means that every execution might see different state of your database.
This behavior can be affected by multiple factors:
Explicit caching and possible cache evictions.
Implicit caching with shuffle files.
Exacted set of parameters you use with JDBC data source.
In the first two cases Spark can reuse already fetched data without going back to the original data source. The third one is much more interesting. By default Spark fetches data using a single transaction but there methods which enable parallel reads based on column ranges or predicates. If one of these is used Spark will fetch data using multiple transactions, and each one can observe different state of your database.
If consistent point-in-time semantics is required you have basically two options:
Use immutable, append-only and timestamped records in your database and issue timestamp dependent queries from Spark.
Perform consistent database dumps and use these as a direct input to your Spark jobs.
While the first approach is much more powerful it is much harder to implement if you're working with per-existing architecture.

Potential issue with Couchbase paging

It may be too much turkey over the holidays, but I've been thinking about a potential problem that we could have with Couchbase.
Currently we paginate based on time, but I'm thinking a similar issue could occur with other values used for paging for example the atomic counter. I'll try to explain best I can, this would only occur in a load balanced environment.
For example say we have 4 servers load balanced and storing data to our Couchbase cluster. We sort our records based on timestamps currently. If any of the 4 servers writing the data starts to lag behind the others than our pagination would possibly be missing records when retrieving client side. A SQL DB auto-increment and timestamps for example can be created when the record is stored to the DB which will avoid similar issues. Using a NoSql DB like Couchbase you define the data you need to retrieve on before it is stored to the DB. So what I am getting at is if there is a delay in storing to the DB and you are retrieving in a pagination fashion while this delay has occurred, you run the real possibility of missing data. Since we are paging that data may never be viewed.
Interested in what other thoughts people have on this.
EDIT**
Response to Andrew:
Example a facebook or pintrest type app is storing data to a DB, they have many load balanced servers from the frontend writing to the db. If for some reason writing is delayed its a non issue with a SQL DB because a timestamp or auto increment happens when the data is actually stored to the DB. There will be no missing data when paging. asking for 1-7 will give you data that is only stored in the DB, 7-* will contain anything that is delayed because an auto-increment value has not been created for that record becuase it is not actually stored.
In Couchbase its different, you actually get your auto increment value (atomic counter) and then save it. So for example say a record is going to be stored as atomic counter number 4. For some reasons this is delayed in storing to the DB. Other servers are grabbing 5, 6, 7 and storing that data just fine. The client now asks for all data between 1 and 7, 4 is still not stored. Then the next paging request is 7 to *. 4 will never be viewed.
Is there a way around this? Can it be modelled differently in CB, or is this just a potential weakness in CB when needing to page results. As I mentioned are paging is timestamp sensitive.
Michael,
Couchbase is an eventually consistent database with respect to views. It is ACID with respect to documents. There are durability interfaces that let you manage this. This means that you can rest assured you won't lose data and that indexes will catch up eventually.
In my experience with Couchbase, you need to expect that the nodes will never be in-sync. There are many things the database is doing, such as compaction and replication. The most important thing you can do to enhance performance is to put your views on a separate spindle from the data. And you need to ensure that your main data spindles across your cluster can sustain between 3-4 times your ingestion bandwidth. Also, make sure your main document key hashes appropriately to distribute the load.
It sounds like you are discussing a situation where the data exists in your system for less time than it takes to be processed through the view system. If you are removing data that fast, you need either a bigger cluster or faster disk arrays. Of the two choices, I would expand the size of your cluster. I like to think of Couchbase as building a RAIS, Redundant Array of Independent Servers. By expanding the cluster, you reduce the coincidence of hotspots and gain disk bandwidth. My ideal node has two local drives, one each for data and views, and enough RAM for my working set.
Anon,
Andrew

Do I use Azure Table Storage or SQL Azure for our CQRS Read System?

We are about to implement the Read portion of our CQRS system in-house with the goal being to vastly improve our read performance. Currently our reads are conducted through a web service which runs a Linq-to-SQL query against normalised data, involving some degree of deserialization from an SQL Azure database.
The simplified structure of our data is:
User
Conversation (Grouping of Messages to the same recipients)
Message
Recipients (Set of Users)
I want to move this into a denormalized state, so that when a user requests to see a feed of messages it reads from EITHER:
A denormalized representation held in Azure Table Storage
UserID as the PartitionKey
ConversationID as the RowKey
Any volatile data prone to change stored as entities
The messages serialized as JSON in an entity
The recipients of said messages serialized as JSON in an entity
The main problem with this the limited size of a row in Table Storage (960KB)
Also any queries on the "volatile data" columns will be slow as they aren't part of the key
A normalized representation held in Azure Table Storage
Different table for Conversation details, Messages and Recipients
Partition keys for message and recipients stored on the Conversation table.
Bar that; this follows the same structure as above
Gets around the maximum row size issue
But will the normalized state reduce the performance gains of a denormalized table?
OR
A denormalized representation held in SQL Azure
UserID & ConversationID held as a composite primary key
Any volatile data prone to change stored in separate columns
The messages serialized as JSON in a column
The recipients of said messages serialized as JSON in an column
Greatest flexibility for indexing and the structure of the denormalized data
Much slower performance than Table Storage queries
What I'm asking is whether anyone has any experience implementing a denormalized structure in Table Storage or SQL Azure, which would you choose? Or is there a better approach I've missed?
My gut says the normalized (At least to some extent) data in Table Storage would be the way to go; however I am worried it will reduce the performance gains to conduct 3 queries in order to grab all the data for a user.
Your primary driver for considering Azure Tables is to vastly improve read performance, and in your scenario using SQL Azure is "much slower" according to your last point under "A denormalized representation held in SQL Azure". I personally find this very surprising for a few reasons and would ask for detailed analysis on how this claim was made. My default position would be that under most instances, SQL Azure would be much faster.
Here are some reasons for my skepticism of the claim:
SQL Azure uses the native/efficient TDS protocol to return data; Azure Tables use JSON format, which is more verbose
Joins / Filters in SQL Azure will be very fast as long as you are using primary keys or have indexes in SQL Azure; Azure Tables do not have indexes and joins must be performed client side
Limitations in the number of records returned by Azure Tables (1,000 records at a time) means you need to implement multiple roundtrips to fetch many records
Although you can fake indexes in Azure Tables by creating additional tables that hold a custom-built index, you own the responsibility of maintaining that index, which will slow your operations and possibly create orphan scenarios if you are not careful.
Last but not least, using Azure Tables usually makes sense when you are trying to reduce your storage costs (it is cheaper than SQL Azure) and when you need more storage than what SQL Azure can offer (although you can now use Federations to break the single database maximum storage limitation). For example, if you need to store 1 billion customer records, using Azure Table may make sense. But using Azure Tables for increase speed alone is rather suspicious in my mind.
If I were in your shoes I would question that claim very hard and make sure you have expert SQL development skills on staff that can demonstrate you are reaching performance bottlenecks inherent of SQL Server/SQL Azure before changing your architecture entirely.
In addition, I would define what your performance objectives are. Are you looking at 100x faster access times? Did you consider caching instead? Are you using indexing properly in your database?
My 2 cents... :)
I won't try to argue on the exact definition of CQRS. As we are talking about Azure, I'll use it's docs as a reference. From there we can find that:
CQRS doesn't necessary requires that you use a separate read storage.
For greater isolation, you can physically separate the read data from the write data.
"you can" doesn't mean "you must".
About denormalization and read optimization:
Although
The read model of a CQRS-based system provides materialized views of the data, typically as highly denormalized views
the key point is
the read database can use its own data schema that is optimized for queries
It can be a different schema, but it can still be normalized or at least not "highly denormalized". Again - you can, but that doesn't mean you must.
More than that, if you performance is poor due to write locks and not because of heavy SQL requests:
The read store can be a read-only replica of the write store
And when we talk about request's optimization, it's better to talk more about requests themselves, and less about storage types.
About "it reads from either" [...]
The Materialized View pattern describes generating prepopulated views of data in environments where the source data isn't in a suitable format for querying, where generating a suitable query is difficult, or where query performance is poor due to the nature of the data or the data store.
Here the key point is that views are plural.
A materialized view can even be optimized for just a single query.
...
Materialized views tend to be specifically tailored to one, or a small number of queries
So you choice is not between those 3 options. It's much wider actually.
And again, you don't need another storage to create views. All can be done inside a single DB.
About
My gut says the normalized (At least to some extent) data in Table Storage would be the way to go; however I am worried it will reduce the performance gains to conduct 3 queries in order to grab all the data for a user.
Yes, of course, performance will suffer! (Also consider the matter of consistency). But will it be OK or not you can never be sure until you test it. With your data and your requests. Because delays in data transfers can actually be less than time required for some elaborate SQL-request.
So all boils down to:
What features do you need and which of them Table Storage and/or SQL Azure have?
And then, how much will it cost?
These you can only answer yourself. And these choices have little to do with performance. Because if there is a suitable index in either of those, I believe the performance will be virtually indistinguishable.
To sum up:
SQL Azure or Azure Table Storage?
For different requests and data you can and you probably should use both. But there is too little information in the question to give you the exact answer (we need an exact request for that). But I agree with #HerveRoggero - most probably you should stick with SQL Azure.
I am not sure if I can add any value to other answers, but I want to draw your attention toward modeling the data storage based on your query paths. Are you going to query all the mentioned data bits together? Is the user going to ask for some of it as additional information after a click or something? I am assuming that you have thought about this question already, and you are positive that you want to query everything in one go. i.e., the API or something needs to return all this information at once.
In that case, nothing will beat querying a single object by key. If you are talking about Azure's Table Storage specifically, it says right there that it's a key-value store. I am curious whether you have considered the document database (e.g. Cosmos DB) instead? If you are implementing CQRS read models, you could generate a single document per user that has all information that a user sees on a feed. You query that document by user id, which would be the key. This approach would be the optimal CQRS implementation in my mind because, after all, you are aiming to implement read models. Unless I misinterpreted something in your question or you have strong reasons to not go with document databases.

Resources