Cassandra changing Primary Key vs Firing multiple select queries - cassandra

I have a table that stores list products that a user has. The table looks like this.
create table my_keyspace.userproducts{
userid,
username,
productid,
productname,
producttype,
Primary Key(userid)
}
All users belong to a group, there could be min 1 to max 100 users in a group
userid|groupid|groupname|
1 |g1 | grp1
2 |g2 | grp2
3 |g3 | grp3
We have new requirement to display all products for all users in a single group.
So do i change my userproducts so that my Partition Key is now groupid and make userid as my cluster key, so that i get all my results in one single query.
Or do I keep my table design as it is and fire multiple select queries by selecting all users in a group from second table and then fire one select query for each user, consolidate data in my code and then return it to the users
Thanks.

Even before getting to your question, your data modelling as you presented it has a problem: You say that you want to store "a list products that a user has". But this is not what the table you presented has - your table has a single product for each userid. The "userid" is the key of your table, and each entry in the table, i.e, each unique userid, has one combination of the other fields.
If you really want each user to have a list of products, you need the primary key to be (userid, productid). This means that each record is indexed by both a userid and a productid, or in other words - a userid has a list of records each with its own productid. Cassandra allows you to efficiently fetch all the productid records for a single userid because it implements the first part of the key as a "partition key" but the second part is a "clustering key".
Regarding your actual question, you indeed have two options: Either do multiple queries on your original tables, or do so-called denormalization, i.e., create a second table with exactly what you want searchable immediately. For the second option you can either do it manually (update both tables every time you have new data), or let Cassandra update the second table for you automatically, using a feature called Materialized Views.
Which of the two options - multiple queries or multiple updates - to use really depends on your workload. If it has many updates and rare queries, it is better to leave updates quick and make queries slower. If, on the other hand, it has few updates but many queries, it is better to make updates slower (when each update needs to update both tables) but make queries faster. Another important issue is how much query latency is important for you - the multiple queries option not only increases the load on the cluster (which you can solve by throwing more hardware at the problem) but also increases the latency - a problem which does not go away with more hardware and for some use cases may become a problem.
You can also achieve a similar goal in Cassandra by using the Secondary Index feature, which has its own performance characteristics (in some respects it is similar to the "multiple queries" solution).

Related

Are client side joins permissable in Cassandra if client drills down on datapoint?

I have this structure with about 1000 data points in a list on the website:
Datapoint1:
Datapoint2:
...
Datapoint1000:
With each datapoint containing 6 fields of information.
Each datapoint can be opened to reveal an additional 2-3x of information in sublist.
Would making a new request upon the user clicking on one of my datapoints be considered bad practice in Cassandra? Should I just go ahead and get it all in one go?
Should I just go ahead and get it all in one go?
Definitely not.
Would making a new request upon the user clicking on one of my datapoints be considered bad practice in Cassandra?
That's absolutely the way you should do it. Cassandra is great at writing large amounts of data, but not so great a returning large amounts of data. More, small key-based queries are definitely the way to go.
It is possible to do the JOINs on the client side but as a general proposition, queries which require joins indicate that you possibly didn't design the data model correctly.
You need to model your data such that (a) each application query (b) maps to a single table. If you need to do a client-side JOIN then you need to query the database multiple times to get the data required by your app. It will work but it's not efficient so affects the performance of the app and the database.
To illustrate with an example, let's say you app needs to display a customer's list of orders. The table design would need to be partitioned by customer with (clustered) multiple rows of orders:
CREATE TABLE orders_by_customerid (
customerid text,
orderid text,
orderdate timestamp,
ordertotal decimal,
...
PRIMARY KEY (customerid, orderid)
)
You would retrieve the list of orders for a customer with:
SELECT ... FROM orders_by_customerid WHERE customerid = ?
By default, the driver or Stargate API your app is using would page the results so only the first 100 rows (for example) will be returned instead of retrieving thousands of rows in a single pass. Note that the page size is configurable. Cheers!

Regarding Azure table design

I am working as freelancer and right now working on one of my game and trying to use Azure table service to log my user moves in Azure tables.
The game is based on Cards.
The flow is like this:
Many users(UserId) will be playing on a table(TableId). Each game on the table will have a unique GameId. In each game there could be multiple deals with Unique DealId.
There can be multiple deals on the same table with same gameId. Also each user will have same DealId in a single game.
Winner is decided after multiple chances of a player.
Problem:
I can make TableId as PartitionKey and but I am not sure what to chose for RowKey because combination of TableId and RowKey (GameId/UserId/DealId) should be unique in the table.
I can have entries like:
TableId GameId DealId UserId timestamp
1 201 300 12345
1 201 300 12567
May be what I can do is to create 4 Azure tables like below but I am doing a lot of duplication; also I would not be able to fire a a point query as mentioned here at https://azure.microsoft.com/en-us/documentation/articles/storage-table-design-guide/#guidelines-for-table-design
GameLogsByTableId -- this will have TableId as PartitionKey and GUID as RowKey
GameLogsByGameId -- this will have GameId as PartitionKey and GUID as RowKey
GameLogsByUserId -- this will have UserId as PartitionKey and GUID as RowKey
GameLogsByDealId -- this will have DealId as PartitionKey and GUID as RowKey
Thoughts please?
Format of TableId,GameId,DealId and UserId is long.
I would like to query data such that
Get me all the logs from a TableId.
Get me all the logs from a TableId and in a particular game(GameId)
Get me all the logs of a user(userid) in this game(GameId)
Get me all the logs of a user in a deal(dealId)
Get me all the logs from a table on a date; similarly for a user,game and deal
Based on my knowledge so far on Azure Tables, I believe you're on right track.
However there are certain things I would like to mention:
You could use a single table for storing all data
You don't really need to use separate tables for storing each kind of data though this approach logically separates the data nicely. If you want, you could possibly store them in a single table. If you go with single table, since these ids (Game, Table, User, and Deal) are numbers what I would recommend is to prefix the value appropriately so that you can nicely identify them. For example, when specifying PartitionKey denoting a Game Id, you can prefix the value with G| so that you know it's the Game Id e.g. G|101.
Pre-pad your Id values with 0 to make them equal length string
You mentioned that your id values are long. However the PartitionKey value is of string type. I would recommend prepadding the values so that they are of equal length. For example, when storing Game Id as PartitionKey instead of storing them as 1, 2, 103 etc. store them as 00000000001, 00000000002, 00000000103. This way when you list all Ids, they will be sorted in proper order. Without prepadding, you will get the results as 1, 10, 11, 12....19, 20.
You will loose transaction support
Since you're using multiple tables (or even single table with different PartitionKeys), you will not be able to use Entity Batch Transactions available in Azure Tables and all the inserts need to be done as atomic operations. Since each operation is a network call and can possibly fail, you may want to do that through an idempotent background process which will keep on trying inserting the data into multiple tables till the time it succeeds.
Instead of Guid for RowKey, I suggest you create a composite RowKey based on other values
This is more applicable for update scenario. Since an update requires both PartitionKey and RowKey, I would recommend using a RowKey which is created as a composition of other values. For example, if you're using TableId as PartitionKey for GameLogsByTableId, I would suggest creating a RowKey using other values e.g. U|[UserId]|D|[DealId]|G|[GameId]. This way, when you get a record to update, you automatically know how to create a RowKey instead of fetching the data first from the table.
Partition Scans
I looked at your querying requirements and almost all of them would result in Partition Scans. To avoid that, I would suggest keeping even more duplicate copies of the data. For example, consider #3 and #4 in your querying requirements. In this case, you will need to scan the entire partition for a user to find information about a Game Id and Deal Id. So please be prepared for the scenario where table service returns you nothing but continuation tokens.
Personally, unless you have absolutely massive data requirements, I would not use table storage for this. It will make your job much harder than using an SQL database; you can use any index you like, have relational integrity, and so much more. The only thing in favour of ATS is that it's cheap for large data.

Is a read with one secondary index faster than a read with multiple in cassandra?

I have this structure that I want a user to see the other user's feeds.
One way of doing it is to fan out an action to all interested parties's feed.
That would result in a query like select from feeds where userid=
otherwise i could avoid writing so much data and since i am already doing a read I could do:
select from feeds where userid IN (list of friends).
is the second one slower? I don't have the application yet to test this with a lot of data/clustering. As the application is big writing code to test a single node is not worth it so I ask for your knowledge.
If your title is correct, and userid is a secondary index, then running a SELECT/WHERE/IN is not even possible. The WHERE/IN clause only works with primary key values. When you use it on a column with a secondary index, you will see something like this:
Bad Request: IN predicates on non-primary-key columns (columnName) is not yet supported
Also, the DataStax CQL3 documentation for SELECT has a section worth reading about using IN:
When not to use IN
The recommendations about when not to use an index apply to using IN
in the WHERE clause. Under most conditions, using IN in the WHERE
clause is not recommended. Using IN can degrade performance because
usually many nodes must be queried. For example, in a single, local
data center cluster with 30 nodes, a replication factor of 3, and a
consistency level of LOCAL_QUORUM, a single key query goes out to two
nodes, but if the query uses the IN condition, the number of nodes
being queried are most likely even higher, up to 20 nodes depending on
where the keys fall in the token range.
As for your first query, it's hard to speculate about performance without knowing about the cardinality of userid in the feeds table. If userid is unique or has a very high number of possible values, then that query will not perform well. On the other hand, if each userid can have several "feeds," then it might do ok.
Remember, Cassandra data modeling is about building your data structures for the expected queries. Sometimes, if you have 3 different queries for the same data, the best plan may be to store that same, redundant data in 3 different tables. And that's ok to do.
I would tackle this problem by writing a table geared toward that specific query. Based on what you have mentioned, I would build it like this:
CREATE TABLE feedsByUserId
userid UUID,
feedid UUID,
action text,
PRIMARY KEY (userid, feedid));
With a composite primary key made up of userid as the partitioning key you will then be able to run your SELECT/WHERE/IN query mentioned above, and achieve the expected results. Of course, I am assuming that the addition of feedid will make the entire key unique. if that is not the case, then you may need to add an additional field to the PRIMARY KEY. My example is also assuming that userid and feedid are version-4 UUIDs. If that is not the case, adjust their types accordingly.

Cassandra/Redis: Way to create feed without Cassandra 'IN' secondary index?

I'm having a bit of an issue with my application functionality integrating with Cassandra. I'm trying to create a content feed for my users. Users can create posts which, in turn, have the field user_id. I'm using Redis for the entire social graph and using Cassandra columns solely for objects. In Redis, user 1 has a set named user:1:followers with all of his/her follower ids. These follower ids correspond with the Cassandra ids in the users table and user_ids in the posts table.
My goal was originally to simply plug all of the user_ids from this Redis set into a query that would use FROM posts WHERE user_id IN (user_ids here) and grab all of the posts from the secondary index user_id. The issue is that Cassandra purposely does not support the IN operator in secondary indexes because that index would force Cassandra to search ALL of its nodes for that value. I'm left with only two options I can see: Either create a Redis list of user:1:follow_feed for the post IDs then search Cassandra's primary index for those posts in a single query, or keep it the way I have it now and run an individual query for every user_id in the user:1:follower set.
I'm really leaning against the first option because I already have tons and tons of graph data in Redis, and this option would add a new list for every user. The second way is far worse. I would put a massive read load on Cassandra and it would take a long time to run individual queries for a set of ids. I'm kind of stuck between a rock and a hard place, as far as I see it. Is there any way to query the secondary indexes with multiple values? If not, is there a more efficient way to load these content feeds (RAM and speed wise) compared to the options of more Redis lists or multiple Cassandra queries? Thanks in advance.
Without knowing the schema of the posts table (and preferably the others, as well), it's really hard to make any useful suggestions.
It's unclear to me why you need to have user_id be a secondary index, as opposed to your primary key.
In general it's quite useful to key content like posts off of the user that created it, since it allows you to do things like retrieve all posts (optionally over a given range, assuming they are chronologically sorted) very efficiently.
With Cassandra, if you find that a table can effectively answer some of the queries that you want to perform but not others, you are usually best of denormalizing that table and creating another table with a different structure in order to keep your queries to a single CQL partition and node.
CREATE TABLE posts (
user_id int,
post_id int,
post_text text,
PRIMARY KEY (user_id, post_id)
) WITH CLUSTERING ORDER BY (post_id DESC)
This table can answer queries such as:
select * from posts where user_id = 1234;
select * from posts where user_id = 1 and post_id = 53;
select * from posts where user_id = 1 and post_id > 5321 and post_id < 5400;
The reverse clustering on post_id is to make retrieving the most recent posts the most efficient by placing them at the beginning of the partition physically within the sstable.
In that example, user_id being a partition column, means "all cql rows with this user_id will be hashed to the same partition, and hence the same physical nodes, and eventually, the same sstables. That's why it's possible to
retrieve all posts with that user_id, as they are store contiguously
retrieve a slice of them by doing a ranged query on post_id
retrieve a single post by supplying both the partition column(user_id) and the clustering column (post_id)
In effect, this become a hashmap of a hashmap lookup. The one major caveat, though, is that when using partition and clustering columns, you always need to supply all columns from left to right in your query, without skipping any. So in this case, that means you can't retrieve an individual post without knowing the user_id that the post_id belongs to. That is addressable in user-code(by storing a reverse mapping and doing the lookup when necessary, or by encoding the user_id into the post_id that is passed around your application), but is definitely something to take into consideration.

Storing list in cassandra

I want to save a friends list in Cassandra where a user may have few hundred of friends . Should i store the list of friends, which is an email id, as a list or set in Cassandra or should i create a separate table having the columns user_id and friends which will include all the user(millions of users) along with their friends .
If i create a separate table with user_id and friends column will there be degradation in performance while retrieving the entire friend list of the user/ one friend of the user as the table will contain many records/rows.
It is important to note that lists and sets in Cassandra are not iterable. This means when you query for them, you get back the whole list or the whole set. If the collection has a high cardinality then this could pose issues in querying such as read timeouts or even a heap OOM error.
Since it sounds like there is no cap on the amount of friends one can have, one option could be to have a separate table that is partitioned on user and clustered on friend.
CREATE TABLE user_friends (
owner_user_id int,
friend_user_id int,
PRIMARY KEY(owner_user_id, friend_user_id)
);
This will ensure that the friend_user_id is in order and will allow you to do client side paging if the number of friends is very large. It also allows for a quick way to check if a person is a friend of a user.

Resources