Patching a recursively-defined list without a <<loop>> - haskell

Context
We all know the recursively-defined Fibonacci sequence:
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)
λ> fibs
[1,1,2,3,5,9,13,21,34,55,89...
Question
I'm trying to “patch” it in a few places, so that:
the general recursive equation “element is sum of two previous elements” holds, but
there can be countable exceptions as to individual elements' values.
Where I'm at
Utility
To this end, I'll define the following function to modify a specific element in a list:
patch :: Int -> a -> [a] -> [a]
patch i v xs = left ++ v : right where (left,_:right) = splitAt i xs
I can use it to change the sequence of naturals:
λ> patch 5 0 [0..]
[0,1,2,3,4,0,6,7,8,9...
Post-patch
So far, so good. Now to patch the Fibonacci sequence:
λ> patch 1 0 fibs
[1,0,2,3,5,8,13,21,34,55,89...
This fulfills requirement (2).
Full patch
To get (1) as well, I'll rewrite the definition in a more explicit tie-the-knot style:
fibs' p = rec where rec = p (1 : 1 : zipWith (+) rec (tail rec))
With no patch, it still works as expected:
λ> fibs' id
[1,1,2,3,5,9,13,21,34,55,89...
And I now can patch the element I want and keep the recursive definition:
λ> fibs' (patch 1 0)
[1,0,1,1,2,3,5,8,13,21,34...
Limitation
But can I?
λ> fibs' (patch 5 0)
<<loop>>
Problem
What's wrong?
Intuitively, the dataflow seems sound. Every list element ought to have a proper definition that does not involve loops. I mean, it was good enough for no-patch fibs; the patching only ought to make it more defined.
So I'm probably missing something. Some strictness issue with my patch function? Some strictness issue elsewhere? Something else entirely?

You're a bit stricter than you mean to be. Look at
patch i v xs = left ++ v : right where (left,_:right) = splitAt i xs
I believe you intend that xs is guaranteed to have at least i elements. But splitAt doesn't know that. You can likely fix your program using your own splitter.
splitAtGuaranteed :: Int -> [a] -> ([a], [a])
splitAtGuaranteed 0 xs = ([], xs)
splitAtGuaranteed n ~(x:xs) = first (x :) $ splitAtGuaranteed (n - 1) xs
Edit
Daniel Wagner points out that you don't need all the laziness (or the partiality) of splitAtGuaranteed. It's enough to be just a tiny bit lazier:
patch i v xs = left ++ [v] ++ drop 1 right where (left, right) = splitAt i xs

Related

Haskell: Increment elements of a list by cumulative length of previous lists

Here is the list of lists: [[1,2,3],[1,2,3,4],[1,2,3]]
How can I increment each element of the second list by the length of the first list, and increment the third list by the length of the first list + second list? The first list should remain unchanged.
Intended output: [[1,2,3],[4,5,6,7],[8,9,10]]
Since the first list has length 3, the second list is generated by [1+3, 2+3, 3+3, 4+3].
Since the first list + second list combined have length 7, the third list is generated by [1+7, 2+7, 3+7].
Ideally it should work with any number of lists.
So far, I've had slight sucess using this:
scanl1 (\xs ys -> [y + length xs | y <- ys]) [[1,2,3],[1,2,3,4],[1,2,3]]
which outputs: [[1,2,3],[4,5,6,7],[5,6,7]]
scanl1 is a good idea, but it's not quite right, because you don't want your accumulator to be a list, but rather to be an integer. So you really want scanl, not scanl1. I'll leave it as an exercise for you to see how to adjust your solution - given that you managed to write something almost-right with scanl1, I don't think you'll find it too hard once you have the right function.
In the comments, jpmariner suggests mapAccumL :: (s -> a -> (s, b)) -> s -> [a] -> (s, [b])). That's perfectly typed for what we want to do, so let's see how it would look.
import Data.Traversable (mapAccumL)
addPreviousLengths :: [[Int]] -> [[Int]]
addPreviousLengths = snd . mapAccumL go 0
where go n xs = (n + length xs, map (+ n) xs)
λ> addPreviousLengths [[1,2,3],[1,2,3,4],[1,2,3]]
[[1,2,3],[4,5,6,7],[8,9,10]]
mapAccumL really is the best tool for this job - there's not much unnecessary complexity involved in using it. But if you're trying to implement this from scratch, you might try the recursive approach Francis King suggested. I'd suggest a lazy algorithm instead of the tail-recursive algorithm, though:
incrLength :: [[Int]] -> [[Int]]
incrLength = go 0
where go _ [] = []
go amount (x:xs) =
map (+ amount) x : go (amount + length x) xs
It works the same as the mapAccumL version. Note that both versions are lazy: they consume only as much of the input list as necessary. This is an advantage not shared by a tail-recursive approach.
λ> take 3 . incrLength $ repeat [1]
[[1],[2],[3]]
λ> take 3 . addPreviousLengths $ repeat [1]
[[1],[2],[3]]
There are many ways to solve this. A simple recursion is one approach:
lst :: [[Int]]
lst = [[1,2,3],[1,2,3,4],[1,2,3]]
incrLength :: [[Int]] -> Int -> [[Int]] -> [[Int]]
incrLength [] _ result = result
incrLength (x:xs) amount result =
incrLength xs (amount + length x) (result ++ [map (+amount) x])
(Edit: it is more efficient to use (:) in this function. See #amalloy comment below. The result then has to be reversed.
incrLength :: [[Int]] -> Int -> [[Int]] -> [[Int]]
incrLength [] _ result = reverse result
incrLength (x:xs) amount result =
incrLength xs (amount + length x) (map (+amount) x : result)
End Edit)
Another approach is to use scanl. We use length to get the length of the inner lists, then accumulate using scanl.
map length lst -- [3,4,3]
scanl (+) 0 $ map length lst -- [0,3,7,10]
init $ scanl (+) 0 $ map length lst -- [0,3,7]
Then we zip the lst and the accumulated value together, and map one over the other.
incrLength' :: [[Int]] -> [[Int]]
incrLength' lst =
[map (+ snd y) (fst y) | y <- zip lst addlst]
where
addlst =init $scanl (+) 0 $ map length lst
main = do
print $ incrLength lst 0 [] -- [[1,2,3],[4,5,6,7],[8,9,10]]

How to create a Infinite List in Haskell where the new value consumes all the previous values

If I create a infinite list like this:
let t xs = xs ++ [sum(xs)]
let xs = [1,2] : map (t) xs
take 10 xs
I will get this result:
[
[1,2],
[1,2,3],
[1,2,3,6],
[1,2,3,6,12],
[1,2,3,6,12,24],
[1,2,3,6,12,24,48],
[1,2,3,6,12,24,48,96],
[1,2,3,6,12,24,48,96,192],
[1,2,3,6,12,24,48,96,192,384],
[1,2,3,6,12,24,48,96,192,384,768]
]
This is pretty close to what I am trying to do.
This current code uses the last value to define the next. But, instead of a list of lists, I would like to know some way to make an infinite list that uses all the previous values to define the new one.
So the output would be only
[1,2,3,6,12,24,48,96,192,384,768,1536,...]
I have the definition of the first element [1].
I have the rule of getting a new element, sum all the previous elements.
But, I could not put this in the Haskell grammar to create the infinite list.
Using my current code, I could take the list that I need, using the command:
xs !! 10
> [1,2,3,6,12,24,48,96,192,384,768,1536]
But, it seems to me, that it is possible doing this in some more efficient way.
Some Notes
I understand that, for this particular example, that was intentionally oversimplified, we could create a function that uses only the last value to define the next.
But, I am searching if it is possible to read all the previous values into an infinite list definition.
I am sorry if the example that I used created some confusion.
Here another example, that is not possible to fix using reading only the last value:
isMultipleByList :: Integer -> [Integer] -> Bool
isMultipleByList _ [] = False
isMultipleByList v (x:xs) = if (mod v x == 0)
then True
else (isMultipleByList v xs)
nextNotMultipleLoop :: Integer -> Integer -> [Integer] -> Integer
nextNotMultipleLoop step v xs = if not (isMultipleByList v xs)
then v
else nextNotMultipleLoop step (v + step) xs
nextNotMultiple :: [Integer] -> Integer
nextNotMultiple xs = if xs == [2]
then nextNotMultipleLoop 1 (maximum xs) xs
else nextNotMultipleLoop 2 (maximum xs) xs
addNextNotMultiple xs = xs ++ [nextNotMultiple xs]
infinitePrimeList = [2] : map (addNextNotMultiple) infinitePrimeList
take 10 infinitePrimeList
[
[2,3],
[2,3,5],
[2,3,5,7],
[2,3,5,7,11],
[2,3,5,7,11,13],
[2,3,5,7,11,13,17],
[2,3,5,7,11,13,17,19],
[2,3,5,7,11,13,17,19,23],
[2,3,5,7,11,13,17,19,23,29],
[2,3,5,7,11,13,17,19,23,29,31]
]
infinitePrimeList !! 10
[2,3,5,7,11,13,17,19,23,29,31,37]
You can think so:
You want to create a list (call them a) which starts on [1,2]:
a = [1,2] ++ ???
... and have this property: each next element in a is a sum of all previous elements in a. So you can write
scanl1 (+) a
and get a new list, in which any element with index n is sum of n first elements of list a. So, it is [1, 3, 6 ...]. All you need is take all elements without first:
tail (scanl1 (+) a)
So, you can define a as:
a = [1,2] ++ tail (scanl1 (+) a)
This way of thought you can apply with other similar problems of definition list through its elements.
If we already had the final result, calculating the list of previous elements for a given element would be easy, a simple application of the inits function.
Let's assume we already have the final result xs, and use it to compute xs itself:
import Data.List (inits)
main :: IO ()
main = do
let is = drop 2 $ inits xs
xs = 1 : 2 : map sum is
print $ take 10 xs
This produces the list
[1,2,3,6,12,24,48,96,192,384]
(Note: this is less efficient than SergeyKuz1001's solution, because the sum is re-calculated each time.)
unfoldr has a quite nice flexibility to adapt to various "create-a-list-from-initial-conditions"-problems so I think it is worth mentioning.
A little less elegant for this specific case, but shows how unfoldr can be used.
import Data.List
nextVal as = Just (s,as++[s])
where s = sum as
initList = [1,2]
myList =initList ++ ( unfoldr nextVal initList)
main = putStrLn . show . (take 12) $ myList
Yielding
[1,2,3,6,12,24,48,96,192,384,768,1536]
in the end.
As pointed out in the comment, one should think a little when using unfoldr. The way I've written it above, the code mimicks the code in the original question. However, this means that the accumulator is updated with as++[s], thus constructing a new list at every iteration. A quick run at https://repl.it/languages/haskell suggests it becomes quite memory intensive and slow. (4.5 seconds to access the 2000nd element in myList
Simply swapping the acumulator update to a:as produced a 7-fold speed increase. Since the same list can be reused as accumulator in every step it goes faster. However, the accumulator list is now in reverse, so one needs to think a little bit. In the case of predicate function sum this makes no differece, but if the order of the list matters, one must think a little bit extra.
You could define it like this:
xs = 1:2:iterate (*2) 3
For example:
Prelude> take 12 xs
[1,2,3,6,12,24,48,96,192,384,768,1536]
So here's my take. I tried not to create O(n) extra lists.
explode ∷ Integral i ⇒ (i ->[a] -> a) -> [a] -> [a]
explode fn init = as where
as = init ++ [fn i as | i <- [l, l+1..]]
l = genericLength init
This convenience function does create additional lists (by take). Hopefully they can be optimised away by the compiler.
explode' f = explode (\x as -> f $ take x as)
Usage examples:
myList = explode' sum [1,2]
sum' 0 xs = 0
sum' n (x:xs) = x + sum' (n-1) xs
myList2 = explode sum' [1,2]
In my tests there's little performance difference between the two functions. explode' is often slightly better.
The solution from #LudvigH is very nice and clear. But, it was not faster.
I am still working on the benchmark to compare the other options.
For now, this is the best solution that I could find:
-------------------------------------------------------------------------------------
-- # infinite sum of the previous using fuse
-------------------------------------------------------------------------------------
recursiveSum xs = [nextValue] ++ (recursiveSum (nextList)) where
nextValue = sum(xs)
nextList = xs ++ [nextValue]
initialSumValues = [1]
infiniteSumFuse = initialSumValues ++ recursiveSum initialSumValues
-------------------------------------------------------------------------------------
-- # infinite prime list using fuse
-------------------------------------------------------------------------------------
-- calculate the current value based in the current list
-- call the same function with the new combined value
recursivePrimeList xs = [nextValue] ++ (recursivePrimeList (nextList)) where
nextValue = nextNonMultiple(xs)
nextList = xs ++ [nextValue]
initialPrimes = [2]
infiniteFusePrimeList = initialPrimes ++ recursivePrimeList initialPrimes
This approach is fast and makes good use of many cores.
Maybe there is some faster solution, but I decided to post this to share my current progress on this subject so far.
In general, define
xs = x1 : zipWith f xs (inits xs)
Then it's xs == x1 : f x1 [] : f x2 [x1] : f x3 [x1, x2] : ...., and so on.
Here's one example of using inits in the context of computing the infinite list of primes, which pairs them up as
ps = 2 : f p1 [p1] : f p2 [p1,p2] : f p3 [p1,p2,p3] : ...
(in the definition of primes5 there).

Intermediate value in simple Haskell function

I need a function to double every other number in a list. This does the trick:
doubleEveryOther :: [Integer] -> [Integer]
doubleEveryOther [] = []
doubleEveryOther (x:[]) = [x]
doubleEveryOther (x:(y:zs)) = x : 2 * y : doubleEveryOther zs
However, the catch is that I need to double every other number starting from the right - so if the length of the list is even, the first one will be doubled, etc.
I understand that in Haskell it's tricky to operate on lists backwards, so my plan was to reverse the list, apply my function, then output the reverse again. I have a reverseList function:
reverseList :: [Integer] -> [Integer]
reverseList [] = []
reverseList xs = last xs : reverseList (init xs)
But I'm not quite sure how to implant it inside my original function. I got to something like this:
doubleEveryOther :: [Integer] -> [Integer]
doubleEveryOther [] = []
doubleEveryOther (x:[]) = [x]
doubleEveryOther (x:(y:zs)) =
| rev_list = reverseList (x:(y:zs))
| rev_list = [2 * x, y] ++ doubleEveryOther zs
I'm not exactly sure of the syntax of a function that includes intermediate values like this.
In case it's relevant, this is for Exercise 2 in CIS 194 HW 1.
This is a very simple combination of the two functions you've already created:
doubleEveryOtherFromRight = reverseList . doubleEveryOther . reverseList
Note that your reverseList is actually already defined in the standard Prelude as reverse. so you didn't need to define it yourself.
I'm aware that the above solution isn't very efficient, because both uses of reverse need to pass through the entire list. I'll leave it to others to suggest more efficient versions, but hopefully this illustrates the power of function composition to build more complex computations out of simpler ones.
As Lorenzo points out, you can make one pass to determine if the list has an odd or even length, then a second pass to actually construct the new list. It might be simpler, though, to separate the two tasks.
doubleFromRight ls = zipWith ($) (cycle fs) ls -- [f0 ls0, f1 ls1, f2 ls2, ...]
where fs = if odd (length ls)
then [(*2), id]
else [id, (*2)]
So how does this work? First, we observe that to create the final result, we need to apply one of two function (id or (*2)) to each element of ls. zipWith can do that if we have a list of appropriate functions. The interesting part of its definition is basically
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
When f is ($), we're just applying a function from one list to the corresponding element in the other list.
We want to zip ls with an infinite alternating list of id and (*2). The question is, which function should that list start with? It should always end with (*2), so the starting item is determined by the length of ls. An odd-length requires us to start with (*2); an even one, id.
Most of the other solutions show you how to either use the building blocks you already have or building blocks available in the standard library to build your function. I think it's also instructive to see how you might build it from scratch, so in this answer I discuss one idea for that.
Here's the plan: we're going to walk all the way to the end of the list, then walk back to the front. We'll build our new list during our walk back from the end. The way we'll build it as we walk back is by alternating between (multiplicative) factors of 1 and 2, multiplying our current element by our current factor and then swapping factors for the next step. At the end we'll return both the final factor and the new list. So:
doubleFromRight_ :: Num a => [a] -> (a, [a])
doubleFromRight_ [] = (1, [])
doubleFromRight_ (x:xs) =
-- not at the end yet, keep walking
let (factor, xs') = doubleFromRight_ xs
-- on our way back to the front now
in (3-factor, factor*x:xs')
If you like, you can write a small wrapper that throws away the factor at the end.
doubleFromRight :: Num a => [a] -> [a]
doubleFromRight = snd . doubleFromRight_
In ghci:
> doubleFromRight [1..5]
[1,4,3,8,5]
> doubleFromRight [1..6]
[2,2,6,4,10,6]
Modern practice would be to hide the helper function doubleFromRight_ inside a where block in doubleFromRight; and since the slightly modified name doesn't actually tell you anything new, we'll use the community standard name internally. Those two changes might land you here:
doubleFromRight :: Num a => [a] -> [a]
doubleFromRight = snd . go where
go [] = (1, [])
go (x:xs) = let (factor, xs') = go xs in (3-factor, factor*x:xs')
An advanced Haskeller might then notice that go fits into the shape of a fold and write this:
doubleFromRight :: Num a => [a] -> [a]
doubleFromRight = snd . foldr (\x (factor, xs) -> (3-factor, factor*x:xs)) (1,[])
But I think it's perfectly fine in this case to stop one step earlier with the explicit recursion; it may even be more readable in this case!
If we really want to avoid calculating the length, we can define
doubleFromRight :: Num a => [a] -> [a]
doubleFromRight xs = zipWith ($)
(foldl' (\a _ -> drop 1 a) (cycle [(2*), id]) xs)
xs
This pairs up the input list with the cycled infinite list of functions, [(*2), id, (*2), id, .... ]. then it skips along them both. when the first list is finished, the second is in the appropriate state to be - again - applied, pairwise, - on the second! This time, for real.
So in effect it does measure the length (of course), it just doesn't count in integers but in the list elements so to speak.
If the length of the list is even, the first element will be doubled, otherwise the second, as you've specified in the question:
> doubleFromRight [1..4]
[2,2,6,4]
> doubleFromRight [1..5]
[1,4,3,8,5]
The foldl' function processes the list left-to-right. Its type is
foldl' :: (b -> a -> b) -> b -> [a] -> b
-- reducer_func acc xs result
Whenever you have to work on consecutive terms in a list, zip with a list comprehension is an easy way to go. It takes two lists and returns a list of tuples, so you can either zip the list with its tail or make it indexed. What i mean is
doubleFromRight :: [Int] -> [Int]
doubleFromRight ls = [if (odd i == oddness) then 2*x else x | (i,x) <- zip [1..] ls]
where
oddness = odd . length $ ls
This way you count every element, starting from 1 and if the index has the same parity as the last element in the list (both odd or both even), then you double the element, else you leave it as is.
I am not 100% sure this is more efficient, though, if anyone could point it out in the comments that would be great

How can this haskell rolling sum implementation be improved?

How can I improve the the following rolling sum implementation?
type Buffer = State BufferState (Maybe Double)
type BufferState = ( [Double] , Int, Int )
-- circular buffer
buff :: Double -> Buffer
buff newVal = do
( list, ptr, len) <- get
-- if the list is not full yet just accumulate the new value
if length list < len
then do
put ( newVal : list , ptr, len)
return Nothing
else do
let nptr = (ptr - 1) `mod` len
(as,(v:bs)) = splitAt ptr list
nlist = as ++ (newVal : bs)
put (nlist, nptr, len)
return $ Just v
-- create intial state for circular buffer
initBuff l = ( [] , l-1 , l)
-- use the circular buffer to calculate a rolling sum
rollSum :: Double -> State (Double,BufferState) (Maybe Double)
rollSum newVal = do
(acc,bState) <- get
let (lv , bState' ) = runState (buff newVal) bState
acc' = acc + newVal
-- subtract the old value if the circular buffer is full
case lv of
Just x -> put ( acc' - x , bState') >> (return $ Just (acc' - x))
Nothing -> put ( acc' , bState') >> return Nothing
test :: (Double,BufferState) -> [Double] -> [Maybe Double] -> [Maybe Double]
test state [] acc = acc
test state (x:xs) acc =
let (a,s) = runState (rollSum x) state
in test s xs (a:acc)
main :: IO()
main = print $ test (0,initBuff 3) [1,1,1,2,2,0] []
Buffer uses the State monad to implement a circular buffer. rollSum uses the State monad again to keep track of the rolling sum value and the state of the circular buffer.
How could I make this more elegant?
I'd like to implement other functions like rolling average or a difference, what could I do to make this easy?
Thanks!
EDIT
I forgot to mention I am using a circular buffer as I intend to use this code on-line and process updates as they arrive - hence the need to record state. Something like
newRollingSum = update rollingSum newValue
I haven't managed to decipher all of your code, but here is the plan I would take for solving this problem. First, an English description of the plan:
We need windows into the list of length n starting at each index.
Make windows of arbitrary length.
Truncate long windows to length n.
Drop the last n-1 of these, which will be too short.
For each window, add up the entries.
This was the first idea I had; for windows of length three it's an okay approach because step 2 is cheap on such a short list. For longer windows, you may want an alternate approach, which I will discuss below; but this approach has the benefit that it generalizes smoothly to functions other than sum. The code might look like this:
import Data.List
rollingSums n xs
= map sum -- add up the entries
. zipWith (flip const) (drop (n-1) xs) -- drop the last n-1
. map (take n) -- truncate long windows
. tails -- make arbitrarily long windows
$ xs
If you're familiar with the "equational reasoning" approach to optimization, you might spot a first place we can improve the performance of this function: by swapping the first map and zipWith, we can produce a function with the same behavior but with a map f . map g subterm, which can be replaced by map (f . g) to get slightly less allocation.
Unfortunately, for large n, this adds n numbers together in the inner loop; we would prefer to simply add the value at the "front" of the window and subtract the one at the "back". So we need to get trickier. Here's a new idea: we'll traverse the list twice in parallel, n positions apart. Then we'll use a simple function for getting the rolling sum (of unbounded window length) of prefixes of a list, namely, scanl (+), to convert this traversal into the actual sums we're interested in.
rollingSumsEfficient n xs = scanl (+) firstSum deltas where
firstSum = sum (take n xs)
deltas = zipWith (-) (drop n xs) xs -- front - back
There's one twist, which is that scanl never returns an empty list. So if it's important that you be able to handle short lists, you'll want another equation that checks for these. Don't use length, as that forces the entire input list into memory before starting the computation -- a potentially lethal performance mistake. Instead add a line like this above the previous definition:
rollingSumsEfficient n xs | null (drop (n-1) xs) = []
We can try these two out in ghci. You'll notice that they do not quite have the same behavior as yours:
*Main> rollingSums 3 [10^n | n <- [0..5]]
[111,1110,11100,111000]
*Main> rollingSumsEfficient 3 [10^n | n <- [0..5]]
[111,1110,11100,111000]
On the other hand, the implementations are considerably more concise and are fully lazy in the sense that they work on infinite lists:
*Main> take 5 . rollingSums 10 $ [1..]
[55,65,75,85,95]
*Main> take 5 . rollingSumsEfficient 10 $ [1..]
[55,65,75,85,95]
Efficient implementation for rolling sum in haskell-
rollingSums :: Num a => Int -> [a] -> Maybe [a]
rollingSums n xs | n <= 0 = Nothing
| otherwise = Just $ if length as == n then go (sum as) xs bs else []
where
(as, bs) = splitAt n xs
go s xs [] = [s]
go s xs (y:ys) = s : go (s + y - head xs) (tail xs) ys
Asuming that - sum((i+1)...(i+1+n)) = sum(i..(i+n)) - arr[i] + arr[i+n+1]

Haskell: Double every 2nd element in list

I just started using Haskell and wanted to write a function that, given a list, returns a list in which every 2nd element has been doubled.
So far I've come up with this:
double_2nd :: [Int] -> [Int]
double_2nd [] = []
double_2nd (x:xs) = x : (2 * head xs) : double_2nd (tail xs)
Which works but I was wondering how you guys would write that function. Is there a more common/better way or does this look about right?
That's not bad, modulo the fixes suggested. Once you get more familiar with the base library you'll likely avoid explicit recursion in favor of some higher level functions, for example, you could create a list of functions where every other one is *2 and apply (zip) that list of functions to your list of numbers:
double = zipWith ($) (cycle [id,(*2)])
You can avoid "empty list" exceptions with some smart pattern matching.
double2nd (x:y:xs) = x : 2 * y : double2nd xs
double2nd a = a
this is simply syntax sugar for the following
double2nd xss = case xss of
x:y:xs -> x : 2 * y : double2nd xs
a -> a
the pattern matching is done in order, so xs will be matched against the pattern x:y:xs first. Then if that fails, the catch-all pattern a will succeed.
A little bit of necromancy, but I think that this method worked out very well for me and want to share:
double2nd n = zipWith (*) n (cycle [1,2])
zipWith takes a function and then applies that function across matching items in two lists (first item to first item, second item to second item, etc). The function is multiplication, and the zipped list is an endless cycle of 1s and 2s. zipWith (and all the zip variants) stops at the end of the shorter list.
Try it on an odd-length list:
Prelude> double_2nd [1]
[1,*** Exception: Prelude.head: empty list
And you can see the problem with your code. The 'head' and 'tail' are never a good idea.
For odd-lists or double_2nd [x] you can always add
double_2nd (x:xs) | length xs == 0 = [x]
| otherwise = x : (2 * head xs) : double_2nd (tail xs)
Thanks.
Here's a foldr-based solution.
bar :: Num a => [a] -> [a]
bar xs = foldr (\ x r f g -> f x (r g f))
(\ _ _ -> [])
xs
(:)
((:) . (*2))
Testing:
> bar [1..9]
[1,4,3,8,5,12,7,16,9]

Resources