I want all the output of the pretrained VGG16 model as well as the new classes it is trained on - keras

I have tried transfer learning using VGG16 but only getting a result for those classes which are trained.I want that the output consists of both the VGG16 classes+ my new trained classes. Is it possible?
I have attached my whole code.
import matplotlib.pyplot as plt
import os, PIL
import tensorflow as tf
import numpy as np
import keras
from keras.models import Sequential, Model
from keras.layers.core import Dense, Dropout, Flatten, Reshape, Activation
from keras.layers import Embedding, Input, merge, ELU
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.optimizers import SGD, Adam, RMSprop
from keras.regularizers import l2
from keras.utils.np_utils import to_categorical
import sklearn.metrics as metrics
from PIL import Image, ImageDraw
from keras.applications import VGG16
from keras.applications.vgg16 import preprocess_input, decode_predictions
from keras.preprocessing.image import ImageDataGenerator
def load_images(image_paths):
# Load the images from disk.
images = [plt.imread(path) for path in image_paths]
# Convert to a numpy array and return it.
return np.asarray(images)
def path_join(dirname, filenames):
return [os.path.join(dirname, filename) for filename in filenames]
train_dir = "/home/priyank/Jupyter_notebook/plant_leaves_train_set"
test_dir = "/home/priyank/Jupyter_notebook/val_data_plant"
# # Pre-Trained Model: VGG16
# Downloading the pretrained model of imagenet dataset.
model = VGG16(include_top=True, weights='imagenet')
# # Input Pipeline
# First we need to know the shape of the tensors expected as input by the pre-trained VGG16 model. In this case it is images of shape 224 x 224 x 3.
input_shape = model.layers[0].output_shape[1:3] # the input shape of the vgg16 model
input_shape
# # ImageDataGenerator
# It will pick the image one-by-one and transform all the data each time the image is loaded in the training set.
datagen_train = ImageDataGenerator(
rescale=1./255,
rotation_range=180,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.1,
zoom_range=[0.9, 1.5],
horizontal_flip=True,
vertical_flip=True,
fill_mode='nearest')
datagen_test = ImageDataGenerator(rescale=1./255)
#
# The datagenerator will return the batches of the images. VGG16 model is too large so we can't create the batches too large otherwise we will run out of the RAM and GPU.
# Taking small batch size
batch_size = 20
#
# We can save the randomly transformed images during training, so as to inspect whether they have been overly distorted, so we have to adjust the parameters for the data-generator above.
if True:
save_to_dir = None
else:
save_to_dir='augmented_images/'
generator_train = datagen_train.flow_from_directory(directory=train_dir,
target_size=input_shape,
batch_size=batch_size,
shuffle=True,
save_to_dir=save_to_dir)
generator_test = datagen_test.flow_from_directory(directory=test_dir,
target_size=input_shape,
batch_size=batch_size,
shuffle=False)
steps_test = generator_test.n / batch_size
steps_test
image_paths_train = path_join(train_dir, generator_train.filenames)
image_paths_test = path_join(test_dir, generator_test.filenames)
cls_train = generator_train.classes
cls_test = generator_test.classes
class_names = list(generator_train.class_indices.keys())
class_names
num_classes = generator_train.num_classes
num_classes
# The dataset we have is imbalanced so the gradients for 9.01192 will remain higher adn the gradients of 0.8080 will reamin lower so that model can learn from higher gradient more than the lower gradient.
#
from sklearn.utils.class_weight import compute_class_weight
class_weight = compute_class_weight(class_weight='balanced',
classes=np.unique(cls_train),
y=cls_train)
class_weight
#
# Predicting the our data image with the already trained VGG16 model. Using a helper function which can resize the image so it can be the input to VGG16 model
def predict(image_path):
# Load and resize the image using PIL.
img = PIL.Image.open(image_path)
img_resized = img.resize(input_shape, PIL.Image.LANCZOS)
# Plot the image.
plt.imshow(img_resized)
plt.show()
# Convert the PIL image to a numpy-array with the proper shape.
img_array = np.expand_dims(np.array(img_resized), axis=0)
# Use the VGG16 model to make a prediction.
# This outputs an array with 1000 numbers corresponding to
# the classes of the ImageNet-dataset.
print(img_array.shape)
pred = model.predict(img_array)
# Decode the output of the VGG16 model.
print(pred)
print(pred.shape)
pred_decoded = decode_predictions(pred)[0]
# Print the predictions.
for code, name, score in pred_decoded:
print("{0:>6.2%} : {1}".format(score, name))
predict(image_path='/home/priyank/Pictures/people.jpg')
predict(image_path=image_paths_train[0])
# The pre-trained VGG16 model was unable to classify images from the plant disease dataset. The reason is perhaps that the VGG16 model was trained on the so-called ImageNet dataset which may not have contained many images of plant diseases.
#
# The lower layers of a Convolutional Neural Network can recognize many different shapes or features in an image. It is the last few fully-connected layers that combine these featuers into classification of a whole image. So we can try and re-route the output of the last convolutional layer of the VGG16 model to a new fully-connected neural network that we create for doing classification
# summary of VGG16 model.
model.summary()
# We can see that the last convolutional layer is called 'block5_pool' so we use Keras to get a reference to that layer.
transfer_layer = model.get_layer('block5_pool')
#
#
# We refer to this layer as the Transfer Layer because its output will be re-routed to our new fully-connected neural network which will do the classification for the Knifey-Spoony dataset.
#
# The output of the transfer layer has the following shape:
#
transfer_layer.output
# we take the part of the VGG16 model from its input-layer to the output of the transfer-layer. We may call this the convolutional model, because it consists of all the convolutional layers from the VGG16 model.
conv_model = Model(inputs=model.input,
outputs=transfer_layer.output)
# Start a new Keras Sequential model.
new_model = Sequential()
# Add the convolutional part of the VGG16 model from above.
new_model.add(conv_model)
# Flatten the output of the VGG16 model because it is from a
# convolutional layer.
new_model.add(Flatten())
# Add a dense (aka. fully-connected) layer.
# This is for combining features that the VGG16 model has
# recognized in the image.
new_model.add(Dense(1024, activation='relu'))
# Add a dropout-layer which may prevent overfitting and
# improve generalization ability to unseen data e.g. the test-set.
new_model.add(Dropout(0.5))
# Add the final layer for the actual classification.
new_model.add(Dense(num_classes, activation='softmax'))
optimizer = Adam(lr=1e-5)
loss = 'categorical_crossentropy'
metrics = ['categorical_accuracy']
# Helper-function for printing whether a layer in the VGG16 model should be trained.
def print_layer_trainable():
for layer in conv_model.layers:
print("{0}:\t{1}".format(layer.trainable, layer.name))
print_layer_trainable()
#
#
# In Transfer Learning we are initially only interested in reusing the pre-trained VGG16 model as it is, so we will disable training for all its layers.
#
conv_model.trainable = False
for layer in conv_model.layers:
layer.trainable = False
print_layer_trainable()
new_model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
epochs = 15
steps_per_epoch = 100
# Steps per epochs are multiplied with the epoch here 100*20 = 2000 means 2000 random images will be selected.
history = new_model.fit_generator(generator=generator_train,
epochs=epochs,
steps_per_epoch=steps_per_epoch,
class_weight=class_weight,
validation_data=generator_test,
validation_steps=steps_test)
new_model.save("trained_new.h5")
predict(image_path = "/home/priyank/Jupyter_notebook/pp.jpg")
**IT is only predicting the 38 classes it is trained on I want, if the new image is not belongs to these 38 classes then the model should return the VGG16 class or no match found. please help **
Thanks in advance.

use functional api instead of Sequential,
offical guide is here: https://keras.io/getting-started/functional-api-guide/
You can find a multi input & multi output model example there. What you want is very similar but uses only one input instead of multiple.

Related

Keras ImageDataGenerator Low Validation Accuracy

I'm trying to preform transfer learning with mobilenetv2 to classify 196 classes of cars from the cars-196 dataset of stanford.
My work environment is google colab notebook.
I use the ImageDataGenerator from keras to load the images for the train and validation.
On the training images I also perform data augmentation.
The following code is how I perform it:
# To load the dataset from the drive
from google.colab import drive
drive.mount('/content/drive')
import math
from keras.models import Sequential, Model
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, ReLU, GlobalAveragePooling2D
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input
BATCH_SIZE = 196
train_datagen = ImageDataGenerator(
rotation_range=20, # Rotate the augmented image by 20 degrees
zoom_range=0.2, # Zoom by 20% more or less
horizontal_flip=True, # Allow for horizontal flips of augmented images
brightness_range=[0.8, 1.2], # Lighter and darker images by 20%
width_shift_range=0.1,
height_shift_range=0.1,
preprocessing_function=preprocess_input
)
img_data_iterator = train_datagen.flow_from_directory(
# Where to take the data from, the classes are the sub folder names
'/content/drive/My Drive/Datasets/cars-196/car_data/train',
class_mode="categorical", # classes are in 2D one hot encoded way, default is true but just to point it out
shuffle=True, # shuffle the data, default is true but just to point it out
batch_size=BATCH_SIZE,
target_size=(224, 224) # This size is the default of mobilenet NN
)
validation_img_data_iterator = ImageDataGenerator().flow_from_directory(
'/content/drive/My Drive/Datasets/cars-196/car_data/test',
class_mode="categorical",
shuffle=True,
batch_size=BATCH_SIZE,
target_size=(224, 224)
)
base_model = MobileNetV2(weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
preds = Dense(196, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=preds)
# Disable training of already trained layer
for layer in model.layers[:-3]:
layer.trainable = False
model.compile(optimizer='Adam',loss='categorical_crossentropy',metrics=['accuracy'])
# define the checkpoint
from keras.callbacks import ModelCheckpoint
filepath = "/content/drive/My Drive/Datasets/cars-196/model.h5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
history = model.fit(
img_data_iterator,
steps_per_epoch=math.ceil(8144/BATCH_SIZE), # 8144 is the number of training images
validation_steps=math.ceil(8062/BATCH_SIZE), # 8062 is the number of validation images
validation_data=validation_img_data_iterator,
epochs=100,
callbacks=callbacks_list
)
About the batch size, from this stackoverflow question I decided to set the batch size as the number of labels available, but it did not change anything in terms of val_accuracy.
I've added a dropout of 0.5 between the fully connected layers that I have added, but again, no change in the accuracy of the validation.
My accuracy on the training set arrives to about 92% while the validation accuracy stays at about 0.7%.
My guess is that the ImageDataGenerator is acting weird and screwing up the accuracy, but I have not found any solution for the problem so ATM I dont have a clew what is the reason behind it.
Does anyone have any guesses as to what might be the problem?
----- EDIT
The train and test folder all have sub folders with name of the labels (the different cars I want to identify) and each subfolder has images of that car. This is just how the cars-196 dataset is. The ImageDataGenerator attaches the right label to the image, depending on in what subfolder that image was in.
The problem was that I did not apply the preprocess_input function to the validation data image generator.
Instead of
validation_img_data_iterator = ImageDataGenerator().flow_from_directory(
'/content/drive/My Drive/Datasets/cars-196/car_data/test',
class_mode="categorical",
shuffle=True,
batch_size=BATCH_SIZE,
target_size=(224, 224)
)
Changed it to
validation_img_data_iterator = ImageDataGenerator(
preprocessing_function=preprocess_input
).flow_from_directory(
'/content/drive/My Drive/Datasets/cars-196/car_data/test',
class_mode="categorical",
shuffle=True,
batch_size=BATCH_SIZE,
target_size=(224, 224)
)

Image_classification using resnet50 model with imagenet db with my custom labels

I am working on image_classification problem(multi-class).
i am using resnet50 model( https://keras.io/applications/#classify-imagenet-classes-with-resnet50 ) along with pretrained db "imagenet" using keras
I am getting the the output labels for which the images i passed to the model.
But now,
i have image data and label data with me of my own dataset.
When i pass the images to the resnet50 model it gives back the imagenet labels that are already trained. Now, here, i want the output as my own labels which is already in dataset instead of getting imagenet labels.
How to to fine tune labels in resnet50 model with imagenet db in keras
I have tried the resnet50 model alone and it works fine. but, how to change the output to my own labels instead of imagenet pre-trained labels.
from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np
import os
model = ResNet50(weights='imagenet')
path='/Users/resnet-sample/'
img_path=os.listdir(path)
count=0
for i in img_path:
img = image.load_img(path+i, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
print('Predicted:', decode_predictions(preds, top=1)[0], i)
count=count+1
print(preds)
example:
i have an elephant image in jpg format and label its as an 'elephant' in my dataset.
when i pass this image to resnet50 model which uses imagenet pre-trained db the output i received is 'African-Elephant'(imagenet-label).
So instead of getting imagenet label as output, i want to tune this as 'elephant' as label which is in my dataset.
So, not sure how to fine tune the last layers that gives output as my labels instead of imagenet labels.
Pelase help me on this.
Thanks,
Srknt73
The weights argument should be either None (random initialization), imagenet (pre-training on ImageNet), or the path to the weights file to be loaded. So you give the path to the file containing the labels of your dataset

Question about enabling/disabling dropout with keras functional API

I am using Keras functional API to build a classifier and I am using the training flag in the dropout layer to enable dropout when predicting new instances (in order to get an estimate of the uncertainty). In order to get the expected response one needs to repeat this prediction several times, with keras randomly activating links in the dense layer, and of course it is computational expensive. Therefore, I would also like to have the option to not use dropout at the prediction phase, i.e., use all the network links. Does anyone know how I can do this? Following is a sample code of what I am doing. I tried to look if predict has any relevant parameter but does not seem like it does (?). I can technically train the same model without the training flag at the dropout layer, but I do not want to do this (or better I want to have a more clean solution, rather than having 2 different models).
from sklearn.datasets import make_circles
from keras.models import Sequential
from keras.utils import to_categorical
from keras.layers import Dense
from keras.layers import Dropout
import numpy as np
import keras
# generate a 2d classification sample dataset
X, y = make_circles(n_samples=100, noise=0.1, random_state=1)
n_train = 30
trainX, testX = X[:n_train, :], X[n_train:, :]
trainy, testy = y[:n_train], y[n_train:]
trainy = to_categorical(trainy)
testy = to_categorical(testy)
inputlayer = keras.layers.Input((2,))
d = keras.layers.Dense(500, activation = 'relu')(inputlayer)
d1 = keras.layers.Dropout(rate = .3)(d,training = True)
out = keras.layers.Dense(2, activation = 'softmax')(d1)
model = keras.Model(inputs = inputlayer, outputs = out)
model.compile(loss = 'categorical_crossentropy',metrics = ['accuracy'],optimizer='adam')
model.fit(x = trainX, y = trainy, validation_data=(testX, testy),epochs=1000, verbose=1)
# another prediction on a specific sample
print(model.predict(testX[0:1,:]))
# another prediction on the same sample
print(model.predict(testX[0:1,:]))
Running the above example I get the following output:
[[0.9230819 0.07691813]]
[[0.8222245 0.17777553]]
which is as expected, different class probabilities for the same input, since there is a random (de)activation of the links from the dropout layer.
Any suggestions on how I can enable/disable dropout at the prediction phase with the functional API?
Sure, you do not need to set the training flag when building the Dropout layer. After training your model you define this function:
mc_func = K.function([model.input, K.learning_phase()],
[model.output])
Then you call mc_func with your input and flag 1 to enable dropout, or 0 to disable it:
stochastic_pred = mc_func([some_input, 1])
deterministic_pred = mc_func([some_input, 0])

Using Model file of convolutional neural network

I have trained my model and saved it using model.save.
How can i use model file to predict images.
I used this article How to predict input image using trained model in Keras? and used this codes
# Modify 'test1.jpg' and 'test2.jpg' to the images you want to predict on
from keras.models import load_model
from keras.preprocessing import image
import numpy as np
# dimensions of our images
img_width, img_height = 320, 240
# load the model we saved
model = load_model('model1.h5')
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# predicting images
img = image.load_img('yes.jpeg', target_size=(img_width, img_height))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print(classes)
# predicting multiple images at once
##img = image.load_img('yes.jpeg', target_size=(img_width, img_height))
##y = image.img_to_array(img)
##y = np.expand_dims(y, axis=0)
# pass the list of multiple images np.vstack()
##images = np.vstack([x, y])
##classes = model.predict_classes(images, batch_size=10)
# print the classes, the images belong to
print(classes)
print(classes[0])
print(classes[0][0])
but this result is
[[1]]
[[1]]
[1]
1
how can i convert it into class indices?
Do not recompile your model unless you want to train it again. simply load your model then predict.
Compiling will reset the weights.

how to reuse last layers' bias in next layers in Keras with tensorflow Backend

I'm new to Keras
my neural network structure is here:
neural network structure
my idea is :
import keras.backend as KBack
import tensorflow as tf
#...some code here
model = Sequential()
hidden_units = 4
layer1 = Dense(
hidden_units,
input_dim=len(InputIndex),
activation='sigmoid'
)
model.add(layer1)
# layer1_bias = layer1.get_weights()[1][0]
layer2 = Dense(
1, activation='sigmoid',
use_bias=False
)
model.add(layer2)
# KBack.bias_add(model.output, layer1_bias[0])
I know this is not working cause layer1_bias[0] is not tensor, but I have no idea how to fix it. Or somebody has other solution.
Thanks.
You get the error because bias_add expects a Tensor and you are passing it a float (the actual value of the bias). Also, be aware that your hidden layer actually has 3 biases (one for each node). If you want to add the bias of the first node to your output layer, this should work:
import keras.backend as K
from keras.layers import Dense, Activation
from keras.models import Sequential
model = Sequential()
layer1 = Dense(3, input_dim=2, activation='sigmoid')
layer2 = Dense(1, activation=None, use_bias=False)
activation = Activation('sigmoid')
model.add(layer1)
model.add(layer2)
K.bias_add(model.output, layer1.bias[0:1]) # slice like this to not lose a dimension
model.add(activation)
print(model.summary())
Note that, to be 'correct' (according to the definition of what a dense layer does), you should add the bias first, then the activation.
Also, your code is not really in line with the picture of your network. In the picture, one single shared bias is added to each of the nodes in the network. You can do this with the functional API. The idea is to disable the use of biases in the hidden layer and the output layers, and to manually add a bias variable that you define yourself and that will be shared by the layers. I'm using tensorflow for tf.add() since that supports broadcasting:
from keras.layers import Dense, Lambda, Input, Add
from keras.models import Model
import keras.backend as K
import tensorflow as tf
# Define the shared bias as a custom keras variable
shared_bias = K.variable(value=[0], name='shared_bias')
input_layer = Input(shape=(2,))
# Disable biases in the hidden layer
dense_1 = Dense(units=3, use_bias=False, activation=None)(input_layer)
# Manually add the shared bias
dense_1 = Lambda(lambda x: tf.add(x, shared_bias))(dense_1)
# Disable bias in output layer
output_layer = Dense(units=1, use_bias=False)(dense_1)
# Manually add the bias variable
output_layer = Lambda(lambda x: tf.add(x, shared_bias))(output_layer)
model = Model(inputs=input_layer, outputs=output_layer)
print(model.summary())
This assumes that your shared bias is not trainable though.

Resources