Automata to regular expression - regular-language

I have this simple automata :
Then I write my system :
L0 = aL0 + bL1
L1 = bL0 + aL1 + Ɛ
Using Arden's Theorem I can simplify my expression :
L0 = a*bL1
L1 = bL0 + aL1 + Ɛ
Then :
L1 = b(a*bL1) + aL1 + Ɛ
L1 = b(a*b+a)L1 + Ɛ
L1 = b(a*b+a)*
It seems to be incorrect but I don't understand why, can someone explain me where I'm wrong?

Your problem is that L0 and L1 represent the languages of strings that lead to L0 and L1, not the languages of strings that lead from L0 and L1 to an accepting state. Therefore, the empty string is not equivalent to L1, the accepting state, but to L0, the initial state. Therefore,
L0 = aL0 + bL1 + Ɛ
L1 = bL0 + aL1
Then
L0 = a*(bL1 + Ɛ)
L1 = bL0 + aL1
Next
L0 = a*(bL1 + Ɛ)
L1 = ba*(bL1 + Ɛ) + aL1
= ba*bL1 + ba* + aL1
= (ba*b + a)L1 + ba*
= (ba*b + a)*ba*
This regular expression does appear to be correct.

Related

Solving equation of motion due to (Lorentz acceleration) using Forward Euler and Runge-Kutta 4th order using Python 3

I am tring to solve the equation of motion of charged particle in planetary magnetic field to see the path of the particle using Forward Euler's and RK5 method in python (as an excercise in learning Numerical methods) I encounter two problems:
The 'for loop' in the RK4 method does not update the new values. It give the values of the first iteration for all iteration.
With the change of the sing of 'β = charge/mass' the path of particle which is expected does not change. It seems the path is unaffected by the nature(sign) of the particle. What does this mean physically or mathematically?
The codes are adapted from :
python two coupled second order ODEs Runge Kutta 4th order
and
Applying Forward Euler Method to a Three-Box Model System of ODEs
I would be immensely grateful if anyone explain to me what is wrong in the code.
thank you.
The Code are as under:
import numpy as np
import matplotlib.pyplot as plt
from math import sin, cos
from scipy.integrate import odeint
scales = np.array([1e7, 0.1, 1, 1e-5, 10, 1e-5])
def LzForce(t,p):
# assigning each ODE to a vector element
r,x,θ,y,ϕ,z = p*scales
# constants
R = 60268e3 # metre
g_20 = 1583e-9
Ω = 9.74e-3 # degree/second
B_θ = (R/r)**4*g_20*cos(θ)*sin(θ)
B_r = 2*(R/r)**4*g_20*(0.5*(3*cos(θ)**2-1))
β = +9.36e10
# defining the ODEs
drdt = x
dxdt = r*(y**2 +(z+Ω)**2*sin(θ)**2-β*z*sin(θ)*B_θ)
dθdt = y
dydt = (-2*x*y +r*(z+Ω)**2*sin(θ)*cos(θ)+β*r*z*sin(θ)*B_r)/r
dϕdt = z
dzdt = (-2*x*(z+Ω)*sin(θ)-2*r*y*(z+Ω)*cos(θ)+β*(x*B_θ-r*y*B_r))/(r*sin(θ))
return np.array([drdt,dxdt,dθdt,dydt,dϕdt,dzdt])/scales
def ForwardEuler(fun,t0,p0,tf,dt):
r0 = 6.6e+07
x0 = 0.
θ0 = 88.
y0 = 0.
ϕ0 = 0.
z0 = 22e-3
p0 = np.array([r0,x0,θ0,y0,ϕ0,z0])
t = np.arange(t0,tf+dt,dt)
p = np.zeros([len(t), len(p0)])
p[0] = p0
for i in range(len(t)-1):
p[i+1,:] = p[i,:] + fun(t[i],p[i,:]) * dt
return t, p
def rk4(fun,t0,p0,tf,dt):
# initial conditions
r0 = 6.6e+07
x0 = 0.
θ0 = 88.
y0 = 0.
ϕ0 = 0.
z0 = 22e-3
p0 = np.array([r0,x0,θ0,y0,ϕ0,z0])
t = np.arange(t0,tf+dt,dt)
p = np.zeros([len(t), len(p0)])
p[0] = p0
for i in range(len(t)-1):
k1 = dt * fun(t[i], p[i])
k2 = dt * fun(t[i] + 0.5*dt, p[i] + 0.5 * k1)
k3 = dt * fun(t[i] + 0.5*dt, p[i] + 0.5 * k2)
k4 = dt * fun(t[i] + dt, p[i] + k3)
p[i+1] = p[i] + (k1 + 2*(k2 + k3) + k4)/6
return t,p
dt = 0.5
tf = 1000
p0 = [6.6e+07,0.0,88.0,0.0,0.0,22e-3]
t0 = 0
#Solution with Forward Euler
t,p_Euler = ForwardEuler(LzForce,t0,p0,tf,dt)
#Solution with RK4
t ,p_RK4 = rk4(LzForce,t0, p0 ,tf,dt)
print(t,p_Euler)
print(t,p_RK4)
# Plot Solutions
r,x,θ,y,ϕ,z = p_Euler.T
fig,ax=plt.subplots(2,3,figsize=(8,4))
plt.xlabel('time in sec')
plt.ylabel('parameters')
for a,s in zip(ax.flatten(),[r,x,θ,y,ϕ,z]):
a.plot(t,s); a.grid()
plt.title("Forward Euler", loc='left')
plt.tight_layout(); plt.show()
r,x,θ,y,ϕ,z = p_RK4.T
fig,ax=plt.subplots(2,3,figsize=(8,4))
plt.xlabel('time in sec')
plt.ylabel('parameters')
for a,q in zip(ax.flatten(),[r,x,θ,y,ϕ,z]):
a.plot(t,q); a.grid()
plt.title("RK4", loc='left')
plt.tight_layout(); plt.show()
[RK4 solution plot][1]
[Euler's solution methods][2]
''''RK4 does not give iterated values.
The path is unaffected by the change of sign which is expected as it is under Lorentz force''''
[1]: https://i.stack.imgur.com/bZdIw.png
[2]: https://i.stack.imgur.com/tuNDp.png
You are not iterating more than once inside the for loop in rk4 because it returns after the first iteration.
for i in range(len(t)-1):
k1 = dt * fun(t[i], p[i])
k2 = dt * fun(t[i] + 0.5*dt, p[i] + 0.5 * k1)
k3 = dt * fun(t[i] + 0.5*dt, p[i] + 0.5 * k2)
k4 = dt * fun(t[i] + dt, p[i] + k3)
p[i+1] = p[i] + (k1 + 2*(k2 + k3) + k4)/6
# This is the problem line, the return was tabbed in, to be inside the for block, so the block executed once and returned.
return t,p
For physics questions please try a different forum.

Why Sympy does not solve my nonlinear system? Python interpreter remains in execution until I kill the process

I need to solve a nonlinear system of equations in Python using Sympy.
For this, I wrote the code below. However, when I run this code the Python remains busy without returning any error message and, additionally, does not return the solution.
For comparison, I did the same work in Matlab and within a few seconds, the program returns two solutions for this system.
How, using Sympy, I can solve the system?
Regards.
import sympy as sym
import numpy as np
# Variables of the system
S, V, E, A, I, R = sym.symbols('S, V, E, A, I, R')
# Parameters of the system
N = sym.Symbol("N", positive = True)
mi = sym.Symbol("mi", positive = True)
v = sym.Symbol("v", positive = True)
epsilon = sym.Symbol("epsilon", positive = True)
alpha = sym.Symbol("alpha", positive = True)
gamma_as = sym.Symbol("gamma_as", positive = True)
gamma_s = sym.Symbol("gamma_s", positive = True)
gamma_a = sym.Symbol("gamma_a", positive = True)
lamb = sym.Symbol("lamb", positive = True)
tau = sym.Symbol("tau", positive = True)
beta = sym.Symbol("beta", positive = True)
x = sym.Symbol("x")
# Declaration of the system equations
system = [mi*N - v*S + R - (beta*(A+I)/N)*S - mi*S,\
v*S - (1-epsilon)*(beta*(A+I)/N)*V - mi*V,\
(beta*(A+I)/N)*S + (1-epsilon)*(beta*(A+I)/N)*V - sym.exp(-mi*tau)*(beta*(A+I)/N)*S - mi*E,\
alpha*sym.exp(-mi*tau)*(beta*(A+I)/N)*S - (gamma_as + gamma_a + mi)*A,\
(1-alpha)*sym.exp(-mi*tau)*(beta*(A+I)/N)*S + gamma_as*A - (gamma_s + mi)*I,\
gamma_a*A + gamma_s*I - (1+mi)*R]
# Solution
solution_set = sym.nonlinsolve(system, [S, V, E, A, I, R])
pyS, pyV, pyE, pyA, pyI, pyR = solution_set[0]
````
SymPy generally solves a system of polynomial equations like this using Groebner bases. To compute the Groebner basis SymPy needs to identify each of the equations as a polynomial in the given unknowns with coefficients in a computable field (a "domain"). Your coefficients involve both mi and exp(-mi*tau) which SymPy's construct_domain doesn't like so it gives up constructing a computable domain and uses the "EX" domain instead which is very slow.
The solution then is to replace exp(mi*tau) with another symbol (I'll just use tau) and then compute the Groebner basis explicitly yourself:
In [103]: rep = {exp(-mi*tau):tau}
In [104]: system2 = [eq.subs(rep) for eq in system]
In [105]: for eq in system2: pprint(eq)
S⋅β⋅(A + I)
N⋅mi + R - S⋅mi - S⋅v - ───────────
N
V⋅β⋅(1 - ε)⋅(A + I)
S⋅v - V⋅mi - ───────────────────
N
S⋅β⋅τ⋅(A + I) S⋅β⋅(A + I) V⋅β⋅(1 - ε)⋅(A + I)
-E⋅mi - ───────────── + ─────────── + ───────────────────
N N N
S⋅α⋅β⋅τ⋅(A + I)
-A⋅(γₐ + γₐₛ + mi) + ───────────────
N
S⋅β⋅τ⋅(1 - α)⋅(A + I)
A⋅γₐₛ - I⋅(γₛ + mi) + ─────────────────────
N
A⋅γₐ + I⋅γₛ - R⋅(mi + 1)
Now we could use solve or nonlinsolve but it's faster to compute and solve the Groebner basis ourselves:
In [106]: %time gb = groebner(system2, [S, V, E, A, I, R])
CPU times: user 3min 1s, sys: 100 ms, total: 3min 1s
Wall time: 3min 1s
The Groebner basis puts the system of equations into an almost solved form known as a rational univariate representation (RUR). In this case it looks like
S - a*R
V - b*R
E - c*R
A - d*R
I - e*R
R**2 + f*R + g
where the coefficients a, b, c, d, e, f, g are complicated rational functions of the symbolic parameters in the equations (alpha, beta etc). From here we can follow these steps to solve the Groebner basis:
Solve the first 5 linear equations for S, V, E, A and I in terms of R.
Solve the final quadratic equation for R giving two solutions R1 and R2.
Substitute the the solutions for R1 and R2 into the solutions for S, V, E, A and I.
Put it all together as two solution tuples.
That is:
In [115]: syms = [S, V, E, A, I, R]
In [116]: [lsol] = linsolve(gb[:-1], syms[:-1])
In [117]: R1, R2 = roots(gb[-1], R)
In [118]: sol1 = lsol.subs(R, R1) + (R1,)
In [119]: sol2 = lsol.subs(R, R2) + (R2,)
Now we have the two solution tuples in the form that would have been returned by nonlinsolve. Unfortunately the solutions are quite complicated so I won't show them in full. You can get some idea of the complexity by seeing the length of their string representations:
In [122]: print(len(str(sol1)))
794100
In [123]: print(len(str(sol2)))
27850
Now at this point it's worth considering what you actually wanted these solutions for. Maybe it's just that you wanted to substitute some explicit numeric values in for the symbolic parameters. It's worth noting here that potentially it would have been more efficient in the first place to substitute those values into the equations before attempting to solve them symbolically. If you want to see how your solutions depend on some particular parameters say just mi then you can substitute values for everything else and obtain a simpler form of the solution involving only that parameter more quickly:
In [136]: rep = {alpha:1, beta:2, epsilon:3, gamma_as:4, gamma_s:5, gamma_a:6, exp(-mi*tau):7, N:8, v
...: :9}
In [137]: system2 = [eq.subs(rep) for eq in system]
In [138]: %time solve(system2, syms)
CPU times: user 3.92 s, sys: 4 ms, total: 3.92 s
Wall time: 3.92 s
Out[138]:
⎡ ⎛ ⎛ 2
⎢⎛ 8⋅mi 72 ⎞ ⎜4⋅(mi + 5)⋅(mi + 10) 36⋅(mi + 5)⋅(mi + 10)⋅(mi + 12)⋅⎝mi + 4⋅mi
⎢⎜──────, ──────, 0, 0, 0, 0⎟, ⎜────────────────────, ─────────────────────────────────────────────
⎢⎝mi + 9 mi + 9 ⎠ ⎜ 7⋅(mi + 9) ⎛ 4 3 2
⎣ ⎝ 7⋅(mi + 9)⋅⎝3⋅mi + 38⋅mi + 161⋅mi + 718⋅mi
⎞ ⎛ 2 ⎞ ⎛ 3 2 ⎞
- 25⎠ 24⋅(mi + 1)⋅(mi + 5)⋅(mi + 10)⋅⎝mi + mi + 50⎠⋅⎝3⋅mi + 41⋅mi + 209⋅mi + 787⎠ -4⋅(mi + 1
───────, ──────────────────────────────────────────────────────────────────────────────, ──────────
⎞ ⎛ 2 ⎞ ⎛ 4 3 2 ⎞
+ 900⎠ 7⋅(mi + 12)⋅⎝mi + 4⋅mi - 25⎠⋅⎝3⋅mi + 38⋅mi + 161⋅mi + 718⋅mi + 900⎠ (mi +
⎛ 2 ⎞ ⎛ 2 ⎞ ⎛ 2 ⎞ ⎞⎤
)⋅(mi + 5)⋅⎝mi + mi + 50⎠ -16⋅(mi + 1)⋅⎝mi + mi + 50⎠ -8⋅(3⋅mi + 25)⋅⎝mi + mi + 50⎠ ⎟⎥
───────────────────────────, ─────────────────────────────, ───────────────────────────────⎟⎥
⎛ 2 ⎞ ⎛ 2 ⎞ ⎛ 2 ⎞ ⎟⎥
12)⋅⎝mi + 4⋅mi - 25⎠ (mi + 12)⋅⎝mi + 4⋅mi - 25⎠ (mi + 12)⋅⎝mi + 4⋅mi - 25⎠ ⎠⎦
If you substitute values for all parameters then it's a lot faster:
In [139]: rep = {alpha:1, beta:2, epsilon:3, gamma_as:4, gamma_s:5, gamma_a:6, exp(-mi*tau):7, N:8, v
...: :9, mi:10}
In [140]: system2 = [eq.subs(rep) for eq in system]
In [141]: %time solve(system2, syms)
CPU times: user 112 ms, sys: 0 ns, total: 112 ms
Wall time: 111 ms
Out[141]:
⎡⎛1200 124200 5224320 -960 -256 -640 ⎞ ⎛80 72 ⎞⎤
⎢⎜────, ──────, ───────, ─────, ─────, ─────⎟, ⎜──, ──, 0, 0, 0, 0⎟⎥
⎣⎝133 55727 67459 23 23 23 ⎠ ⎝19 19 ⎠⎦
If you look at your system you will see that the 4th and 5th equations have two solutions since solving the 4th for A and substituting into the 5th gives an expression that factors as I*f(S) -- giving, for the value of A, I = 0 and S such that f(S) = 0. Judicious selection of which equation(s) to solve next and taking time to lump constants together so you don't bog down the solver gives both solutions in about 10 seconds with relatively small operation counts (relative to the results of nonlinsolve above -- 10 and 5192 operations). The process gives the same solutions for the representative values above:
def condense(eq, *x, reps=None):
"""collapse additive/multiplicative constants into single
variables, returning condensed expression and replacement
values.
Note: use of the replacement dictionary may require topological sorting
if values depend on the keys.
"""
from sympy.core.traversal import bottom_up
from sympy.simplify.radsimp import collect
from sympy.utilities.iterables import numbered_symbols
if reps is None:
reps = {}
else:
reps = {v:k for k,v in reps.items()}
con = numbered_symbols('c')
free = eq.free_symbols
def c():
while True:
rv = next(con)
if rv not in free:
return rv
def do(e):
if not e.args:
return e
e = e.func(*[do(i) for i in e.args])
isAdd=e.is_Add
if not (isAdd or e.is_Mul):
return e
if isAdd:
ee = collect(e, x, exact=None)
if ee != e:
e = do(ee)
co, id = e.as_coeff_Add() if isAdd else e.as_coeff_Mul()
i, d = id.as_independent(*x, as_Add=isAdd)
if not i.args:
return e
return e.func(co, reps.get(i, reps.setdefault(i, c())), d)
rv = do(bottom_up(eq, do))
return rv, {v: k for k, v in reps.items()}
def repsort(*replace):
"""Return sorted replacement tuples `(o, n)` such that `(o_i, n_i)`
will appear before `(o_j, n_j)` if `o_j` appears in `n_i`. An error
will be raised if `o_j` appears in `n_i` and `o_i` appears in `n_k`
if `k >= i`.
Examples
========
>>> from sympy.abc import x, y, z, a
>>> repsort((x, y + 1), (z, x + 2))
[(z, x + 2), (x, y + 1)]
>>> repsort((x, y + 1), (z, x**2))
[(z, x**2), (x, y + 1)]
>>> repsort(*Tuple((x,y+z),(y,a),(z,1/y)))
[(x, y + z), (z, 1/y), (y, a)]
Any two of the following 3 tuples will not raise an error,
but together they contain a cycle that raises an error:
>>> repsort((x, y), (y, z), (z, x))
Traceback (most recent call last):
...
raise ValueError("cycle detected")
"""
from itertools import permutations
from sympy import default_sort_key, topological_sort
free = {i for i,_ in replace}
defs, replace = sift(replace,
lambda x: x[1].is_number or not x[1].has_free(*free),
binary=True)
edges = [(i, j) for i, j in permutations(replace, 2) if
i[1].has(j[0]) and (not j[0].is_Symbol or j[0] in i[1].free_symbols)]
rv = topological_sort([replace, edges], default_sort_key)
rv.extend(ordered(defs))
return rv
def dupdate(d, s):
"""update values in d with values from s and return the combined dictionaries"""
rv = {k: v.xreplace(s) for k,v in d.items()}
rv.update(s)
return rv
# Variables of the system
syms=S, V, E, A, I, R = symbols('S, V, E, A, I, R')
# Parameters of the system
const = var('a:j k')
system = [
-A*S*c/a - I*S*c/a + R + S*(-h - j) + a*h,
A*(V*c*d/a - V*c/a) + I*(V*c*d/a - V*c/a) + S*j - V*h,
A*(-S*c*k/a + S*c/a - V*c*d/a + V*c/a) - E*h +
I*(-S*c*k/a + S*c/a - V*c*d/a + V*c/a),
A*(S*b*c*k/a - e - f - h) + I*S*b*c*k/a,
A*(-S*b*c*k/a + S*c*k/a + f) + I*(-S*b*c*k/a + S*c*k/a - g - h),
A*e + I*g + R*(-h - 1)
]
import sympy as sym
# Variables of the system
syms = S, V, E, A, I, R = sym.symbols('S, V, E, A, I, R')
# Parameters of the system
N = sym.Symbol("N", positive = True)
mi = sym.Symbol("mi", positive = True)
v = sym.Symbol("v", positive = True)
epsilon = sym.Symbol("epsilon", positive = True)
alpha = sym.Symbol("alpha", positive = True)
gamma_as = sym.Symbol("gamma_as", positive = True)
gamma_s = sym.Symbol("gamma_s", positive = True)
gamma_a = sym.Symbol("gamma_a", positive = True)
lamb = sym.Symbol("lamb", positive = True)
tau = sym.Symbol("tau", positive = True)
beta = sym.Symbol("beta", positive = True)
# Declaration of the system equations
system = [
mi*N - v*S + R - (beta*(A+I)/N)*S - mi*S,
v*S - (1-epsilon)*(beta*(A+I)/N)*V - mi*V,
(beta*(A+I)/N)*S + (1-epsilon)*(beta*(A+I)/N)*V -
sym.exp(-mi*tau)*(beta*(A+I)/N)*S - mi*E,
alpha*sym.exp(-mi*tau)*(beta*(A+I)/N)*S - (gamma_as + gamma_a + mi)*A,
(1-alpha)*sym.exp(-mi*tau)*(beta*(A+I)/N)*S + gamma_as*A - (gamma_s + mi)*I,
gamma_a*A + gamma_s*I - (1+mi)*R]
system, srep = condense(Tuple(*system), *syms)
asol = solve(system[3], A, dict=True)[0]
aeq=Tuple(*[i.xreplace(asol) for i in system])
si = solve(aeq[4], *syms, dict=True)
sol1 = dupdate(asol, si[0])
sol1 = dupdate(sol1, solve(Tuple(*system).xreplace(sol1),syms,dict=1)[0]); sol1
aeqs4 = Tuple(*[i.xreplace(si[1]) for i in aeq])
ceq, crep = condense(Tuple(*aeqs4),*syms,reps=srep)
ir = solve([ceq[0], ceq[-1]], I, R, dict=1)[0]
ve = solve([i.simplify() for i in Tuple(*ceq).xreplace(ir)], syms, dict=True)[0] # if we don't simplify to make first element 0 we get no solution -- bug?
sol2 = dupdate(asol, si[1])
sol2 = dupdate(sol2, ir)
sol2 = dupdate(sol2, ve)
crep = repsort(*crep.items())
sol1 = Dict({k:v.subs(crep) for k,v in sol1.items()}) # 10 ops
sol2 = Dict({k:v.subs(crep) for k,v in sol2.items()}) # 5192 ops
Test for specific values (as above):
>>> rep = {alpha: 1, beta: 2, epsilon: 3, gamma_as: 4, gamma_s: 5,
... gamma_a: 6, exp(-mi*tau): 7, N: 8, v: 9, mi: 10}
...
>>> sol1.xreplace(rep)
{A: 0, E: 0, I: 0, R: 0, S: 80/19, V: 72/19}
>>> sol2.xreplace(rep)
{A: -960/23, E: 89280/851, I: -256/23,
R: -640/23, S: 1200/133, V: -124200/4921}
Of course, it took time to find this path to the solution. But if the solver could make better selections of what to solve (rather than trying to get the Groebner basis of the whole system) the time for obtaining a solution from SymPy could be greatly reduced.

Python error, 'int' object is not subscriptable

I'm trying to solve differential equations using the Vertel algorithm, but I'm not able to rid myself of this error. Any suggestions?
def Vertel(dt, x0, v0, t, tstop, pravastrana, M=1):
i = 0
x = x0
v = v0
k = 1 # Spring constant
m = 1
while t <= tstop:
a = -(k/m)* x[i]
if i == 0:
v_next = v[i] + a* dt
x_next = x[i] + v_next* dt
else:
x_next = 2* x[i] - x[i-1] + a* dt** dt
x.append(x_next)
t.append(t[i] + dt)
i = i + 1
t = t + dt
return(x, t)
print(*Vertel(0.1 ,1 ,1 , 0, 10, pravastrana_1, ))
On the line, where I define a I get the error message:
> 'int' object is not subscriptable
Any help is appreciated, thank you
You want to initialize x and v as lists,
x = [x0]
v = [v0]
To get the correct order of the Verlet algorithm you might also contemplate to initialize the first step one order higher, as
v_next = v[i] + 0.5*a* dt
x_next = x[i] + v_next* dt
as that gives a correct Taylor expansion to the quadratic term. Note that the velocity is now correct for the half-step position, as it would be used in the Leapfrog Verlet variant.
There will be problems that were masked by the first error, like the actual dual treatment of t as scalar variable and list at the same time, and probably more.

Sympy euler identity to two equations

I have an equation of the form:
𝑎𝑒^(𝑖𝜃2)+𝑏𝑒^(𝑖𝜃3)+𝑐𝑒^(𝑖𝜃4)+𝑑𝑒^(𝑖𝜃1)=0
In sympy, using the Euler identity I want to split it into two equations, one with real numbers and one imaginary.
𝑎cos(𝜃2)+𝑏cos(𝜃3)+𝑐cos(𝜃4)+𝑑cos(𝜃1)=0
𝑎𝑖sin(𝜃2)+𝑏𝑖sin(𝜃3)+𝑐𝑖sin(𝜃4)+𝑑𝑖sin(𝜃1)=0
So far I have tried:
a, b, c, d = symbols("a b c d")
theta1, theta2, theta3, theta4 = symbols("theta1 theta2 theta3 theta4")
eq1 = Eq(a*exp(I*theta2) + b*exp(I*theta3) + c*exp(I*theta4) +d*exp(I*theta1), 0)
eq1 = eq1.subs([(a,40), (b,120), (c,80), (d,100), (theta1,0), (theta2, 40 * (pi.evalf()/180))])
lhs_real, lhs_img = eq1.lhs.as_real_imag()
rhs_real, rhs_img = eq1.rhs.as_real_imag()
eq2 = Eq(lhs_real, rhs_real)
eq3 = Eq(lhs_img, rhs_img)
However my eq2 seems to contain real and imaginary terms.
−120cos(re(𝜃3))sinh(im(𝜃3))+120cos(re(𝜃3))cosh(im(𝜃3))−80cos(re(𝜃4))sinh(im(𝜃4))+80cos(re(𝜃4))cosh(im(𝜃4))+130.641777724759=0
How can I achieve this with Sympy?
I have looked at this question complex numbers in sympy: resolving Euler's Identity but the sympy.re and sympy.im will not work with Sympy equations.
First, welcome to SO!
If you want to separate expression into real and imaginary parts, you can only work with real variables (real=True). You're example could be rewritten as:
import sympy as sy
sy.init_printing()
a_r, b_r, c_r, d_r = sy.symbols('a_r, b_r, c_r, d_r', real=True)
a_i, b_i, c_i, d_i = sy.symbols('a_i, b_i, c_i, d_i', real=True)
th1, th2, th3, th4 = sy.symbols('theta_1, theta_2, theta_3, theta_4 ', real=True)
# complex numbers:
a, b = (a_r + sy.I*a_i), (a_r + sy.I*a_i)
c, d = (c_r + sy.I*c_i), (d_r + sy.I*d_i)
xpr0 = (a * sy.exp(sy.I*th2) + b * sy.exp(sy.I*th3) +
c * sy.exp(sy.I*th4) + d * sy.exp(sy.I*th1))
eq1 = sy.Eq(sy.re(xpr0), 0)
# Gives: -aᵢ⋅sin(θ₂) + aᵣ⋅cos(θ₂) - bᵢ⋅sin(θ₃) + bᵣ⋅cos(θ₃) - cᵢ⋅sin(θ₄) + cᵣ⋅cos(θ₄) - dᵢ⋅sin(θ₁) + dᵣ⋅cos(θ₁) = 0
eq2 = sy.Eq(sy.im(xpr0), 0)
# Gives aᵢ⋅cos(θ₂) + aᵣ⋅sin(θ₂) + bᵢ⋅cos(θ₃) + bᵣ⋅sin(θ₃) + cᵢ⋅cos(θ₄) + cᵣ⋅sin(θ₄) + dᵢ⋅cos(θ₁) + dᵣ⋅sin(θ₁) = 0

How can I find the intersection of two lines in general equation form?

If I have six variables representing two lines in general equation form (ax + by + c = 0). So for example:
ax + by + c = 0
jx + ky + l = 0
How can I find the intersection point's (x and y) [assuming there is one] from the six variables?
PS. Any recommendation of a good source for information on very simply computational geometry, like this, would be appreciated.
The intersection point satisfies both equations. So all you need is to solve them simultaneously:
ax + by + c = 0 (*j)
jx + ky + l = 0 (*a)
ajx + bjy + cj = 0 (-)
ajx + aky + al = 0
(bj-ak)y + cj - al = 0
y = (al-cj) / (bj-ak)
And similarly for x. (Or you can substitute the found value for y in any of the original equations and then find x):
x = (ck-bl) / (bj-ak)

Resources