Why do some function calls fail to work without a type application? - haskell

I am having trouble understanding how type applications work. Why can sing in refuteRefuteKnockable be used without a type application when the call to sing in knockableOrOpened will fail to type check without a type application?
refuteRefuteKnockable :: SingI s => Refuted (Refuted (Knockable s)) -> Knockable s
refuteRefuteKnockable rrK =
case isKnockable $ sing of
Proved k -> k
Disproved rK -> absurd $ rrK rK
knockableOrOpened :: forall s. SingI s => Or Knockable ((:~:) Opened) s
knockableOrOpened =
case sing #s of
SOpened -> OrRight $ Refl
SClosed -> OrLeft KnockClosed
SLocked -> OrLeft KnockLocked
I am working from the following codebase: https://github.com/mstksg/inCode/blob/master/code-samples/singletons/Door3.hs

Type inference is the cause. This type contains s ...
refuteRefuteKnockable :: SingI s => Refuted (Refuted (Knockable s)) -> Knockable s
^^^^^^^^^^^
So, this
refuteRefuteKnockable rrK =
case isKnockable $ sing of
Proved k -> k
^^^
must have type Knockable s. Hence, the type of Proved k is inferred, probably containing s as well. That is the same type of isKnockable $ sing, from which we infer what type should be applied to sing (exploiting the signature of isKnockable). GHC does all of this for us.
In the latter example, we can't perform the same reasoning.
case sing of
SOpened -> OrRight $ Refl
SClosed -> OrLeft KnockClosed
SLocked -> OrLeft KnockLocked
is ambiguous because, even if the three branches must return a known type, we can still call sing on a different type then s and make everything typecheck. Since there isn't a unique s, inference can not work.
Note that above I had to guess a few things. If you shared the definitions of your types, we could be more accurate. (I.e., where is SOpened defined? What about Knockable, etc.?)

Related

Confused about GADTs and propagating constraints

There's plenty of Q&A about GADTs being better than DatatypeContexts, because GADTs automagically make constraints available in the right places. For example here, here, here. But sometimes it seems I still need an explicit constraint. What's going on? Example adapted from this answer:
{-# LANGUAGE GADTs #-}
import Data.Maybe -- fromJust
data GADTBag a where
MkGADTBag :: Eq a => { unGADTBag :: [a] } -> GADTBag a
baz (MkGADTBag x) (Just y) = x == y
baz2 x y = unGADTBag x == fromJust y
-- unGADTBag :: GADTBag a -> [a] -- inferred, no Eq a
-- baz :: GADTBag a -> Maybe [a] -> Bool -- inferred, no Eq a
-- baz2 :: Eq a => GADTBag a -> Maybe [a] -> Bool -- inferred, with Eq a
Why can't the type for unGADTBag tell us Eq a?
baz and baz2 are morally equivalent, yet have different types. Presumably because unGADTBag has no Eq a, then the constraint can't propagate into any code using unGADTBag.
But with baz2 there's an Eq a constraint hiding inside the GADTBag a. Presumably baz2's Eq a will want a duplicate of the dictionary already there(?)
Is it that potentially a GADT might have many data constructors, each with different (or no) constraints? That's not the case here, or with typical examples for constrained data structures like Bags, Sets, Ordered Lists.
The equivalent for a GADTBag datatype using DatatypeContexts infers baz's type same as baz2.
Bonus question: why can't I get an ordinary ... deriving (Eq) for GADTBag? I can get one with StandaloneDeriving, but it's blimmin obvious, why can't GHC just do it for me?
deriving instance (Eq a) => Eq (GADTBag a)
Is the problem again that there might be other data constructors?
(Code exercised at GHC 8.6.5, if that's relevant.)
Addit: in light of #chi's and #leftroundabout's answers -- neither of which I find convincing. All of these give *** Exception: Prelude.undefined:
*DTContexts> unGADTBag undefined
*DTContexts> unGADTBag $ MkGADTBag undefined
*DTContexts> unGADTBag $ MkGADTBag (undefined :: String)
*DTContexts> unGADTBag $ MkGADTBag (undefined :: [a])
*DTContexts> baz undefined (Just "hello")
*DTContexts> baz (MkGADTBag undefined) (Just "hello")
*DTContexts> baz (MkGADTBag (undefined :: String)) (Just "hello")
*DTContexts> baz2 undefined (Just "hello")
*DTContexts> baz2 (MkGADTBag undefined) (Just "hello")
*DTContexts> baz2 (MkGADTBag (undefined :: String)) (Just "hello")
Whereas these two give the same type error at compile time * Couldn't match expected type ``[Char]'* No instance for (Eq (Int -> Int)) arising from a use of ``MkGADTBag'/ ``baz2' respectively [Edit: my initial Addit gave the wrong expression and wrong error message]:
*DTContexts> baz (MkGADTBag (undefined :: [Int -> Int])) (Just [(+ 1)])
*DTContexts> baz2 (MkGADTBag (undefined :: [Int -> Int])) (Just [(+ 1)])
So baz, baz2 are morally equivalent not just in that they return the same result for the same well-defined arguments; but also in that they exhibit the same behaviour for the same ill-defined arguments. Or they differ only in where the absence of an Eq instance gets reported?
#leftroundabout Before you've actually deconstructed the x value, there's no way of knowing that the MkGADTBag constructor indeed applies.
Yes there is: field label unGADTBag is defined if and only if there's a pattern match on MkGADTBag. (It would maybe be different if there were other constructors for the type -- especially if those also had a label unGADTBag.) Again, being undefined/lazy evaluation doesn't postpone the type-inference.
To be clear, by "[not] convincing" I mean: I can see the behaviour and the inferred types I'm getting. I don't see that laziness or potential undefinedness gets in the way of type inference. How could I expose a difference between baz, baz2 that would explain why they have different types?
Function calls never bring type class constraints in scope, only (strict) pattern matching does.
The comparison
unGADTBag x == fromJust y
is essentially a function call of the form
foo (unGADTBag x) (fromJust y)
where foo requires Eq a. That would morally be provided by unGADTBag x, but that expression is not yet evaluated! Because of laziness, unGADTBag x will be evaluated only when (and if) foo demands its first argument.
So, in order to call foo in this example we need its argument to be evaluated in advance. While Haskell could work like this, it would be a rather surprising semantics, where arguments are evaluated or not depending on whether they provide a type class constraint which is needed. Imagine more general cases like
foo (if cond then unGADTBag x else unGADTBag z) (fromJust y)
What should be evaluated here? unGADTBag x? unGADTBag y? Both? cond as well? It's hard to tell.
Because of these issues, Haskell was designed so that we need to manually require the evaluation of a GADT value like x using pattern matching.
Why can't the type for unGADTBag tell us Eq a?
Before you've actually deconstructed the x value, there's no way of knowing that the MkGADTBag constructor indeed applies. Sure, if it doesn't then you have other problems (bottom), but those might conceivably not surface. Consider
ignore :: a -> b -> b
ignore _ = id
baz2' :: GADTBag a -> Maybe [a] -> Bool
baz2' x y = ignore (unGADTBag x) (y==y)
Note that I could now invoke the function with, say, undefined :: GADTBag (Int->Int). Shouldn't be a problem since the undefined is ignored, right★? Problem is, despite Int->Int not having an Eq instance, I was able to write y==y, which y :: Maybe [Int->Int] can't in fact support.
So, we can't have that only mentioning unGADTBag is enough to spew the Eq a constraint into its surrounding scope. Instead, we must clearly delimit the scope of that constraint to where we've confirmed that the MkGADTBag constructor does apply, and a pattern match accomplishes that.
★If you're annoyed that my argument relies on undefined, note that the same issue arises also when there are multiple constructors which would bring different constraints into scope.
An alternative to a pattern-match that does work is this:
{-# LANGUAGE RankNTypes #-}
withGADTBag :: GADTBag a -> (Eq a => [a] -> b) -> b
withGADTBag (MkGADTBag x) f = f x
baz3 :: GADTBag a -> Maybe [a] -> Bool
baz3 x y = withGADTBag x (== fromJust y)
Response to edits
All of these give *** Exception: Prelude.undefined:
Yes of course they do, because you actually evaluate x == y in your function. So the function can only possibly yield non-⟂ if the inputs have a NF. But that's by no means the case for all functions.
Whereas these two give the same type error at compile time
Of course they do, because you're trying to wrap a value of non-Eq type in the MkGADTBag constructor, which explicitly requires that constraint (and allows you to explicitly unwrap it again!), whereas the GADTBag type doesn't require that constraint. (Which is kind of the whole point about this sort of encapsulation!)
Before you've actually deconstructed the x value, there's no way of knowing that the `MkGADTBag` constructor indeed applies.Yes there is: field label `unGADTBag` is defined if and only if there's a pattern match on `MkGADTBag`.
Arguably, that's the way field labels should work, but they don't, in Haskell. A field label is nothing but a function from the data type to the field type, and a nontotal function at that if there are multiple constructors.Yeah, Haskell records are one of the worst-designed features of the language. I personally tend to use field labels only for big, single-constructor, plain-old-data types (and even then I prefer using not the field labels directly but lenses derived from them).
Anyway though, I don't see how “field label is defined iff there's a pattern match” could even be implemented in a way that would allow your code to work the way you think it should. The compiler would have to insert the step of confirming that the constructor applies (and extracting its GADT-encapsulated constraint) somewhere. But where? In your example it's reasonably obvious, but in general x could inhabit a vast scope with lots of decision branches and you really don't want it to get evaluated in a branch where the constraint isn't actually needed.
Also keep in mind that when we argue with undefined/⟂ it's not just about actually diverging computations, more typically you're worried about computations that would simply take a long time (just, Haskell doesn't actually have a notion of “taking a long time”).
The way to think about this is OutsideIn(X) ... with local assumptions. It's not about undefinedness or lazy evaluation. A pattern match on a GADT constructor is outside, the RHS of the equation is inside. Constraints from the constructor are made available only locally -- that is only inside.
baz (MkGADTBag x) (Just y) = x == y
Has an explicit data constructor MkGADTBag outside, supplying an Eq a. The x == y raises a wanted Eq a locally/inside, which gets discharged from the pattern match. OTOH
baz2 x y = unGADTBag x == fromJust y
Has no explicit data constructor outside, so no context is supplied. unGADTBag has a Eq a, but that is deeper inside the l.h. argument to ==; type inference doesn't go looking deeper inside. It just doesn't. Then in the effective definition for unGADTBag
unGADTBag (MkGADTBag x) = x
there is an Eq a made available from the outside, but it cannot escape from the RHS into the type environment at a usage site for unGADTBag. It just doesn't. Sad!
The best I can see for an explanation is towards the end of the OutsideIn paper, Section 9.7 Is the emphasis on principal types well-justified? (A rhetorical question but my answer would me: of course we must emphasise principal types; type inference could get better principaled under some circumstances.) That last section considers this example
data R a where
RInt :: Int -> R Int
RBool :: Bool -> R Bool
RChar :: Char -> R Char
flop1 (RInt x) = x
there is a third type that is arguably more desirable [for flop1], and that type is R Int -> Int.
flop1's definition is of the same form as unGADTBag, with a constrained to be Int.
flop2 (RInt x) = x
flop2 (RBool x) = x
Unfortunately, ordinary polymorphic types are too weak to express this restriction [that a must be only Int or Bool] and we can only get Ɐa.R a -> a for flop2, which does not rule the application of flop2 to values of type R Char.
So at that point the paper seems to give up trying to refine better principal types:
In conclusion, giving up on some natural principal types in favor of more specialized types that eliminate more pattern match errors at runtime is appealing but does not quite work unless we consider a more expressive syntax of types. Furthermore it is far from obvious how to specify these typings in a high-level declarative specification.
"is appealing". It just doesn't.
I can see a general solution is difficult/impossible. But for use-cases of constrained Bags/Lists/Sets, the specification is:
All data constructors have the same constraint(s) on the datatype's parameters.
All constructors yield the same type (... -> T a or ... -> T [a] or ... -> T Int, etc).
Datatypes with a single constructor satisfy that trivially.
To satisfy the first bullet, for a Set type using a binary balanced tree, there'd be a non-obvious definition for the Nil constructor:
data OrdSet a where
SNode :: Ord a => OrdSet a -> a -> OrdSet a -> OrdSet a
SNil :: Ord a => OrdSet a -- seemingly redundant Ord constraint
Even so, repeating the constraint on every node and every terminal seems wasteful: it's the same constraint all the way down (which is unlike GADTs for EDSL abstract syntax trees); presumably each node carries a copy of exactly the same dictionary.
The best way to ensure same constraint(s) on every constructor could just be prefixing the constraint to the datatype:
data Ord a => OrdSet a where ...
And perhaps the constraint could go 'OutsideOut' to the environment that's accessing the tree.
Another possible approach is to use a PatternSynonym with an explicit signature giving a Required constraint.
pattern EqGADTBag :: Eq a => [a] -> GADTBag a -- that Eq a is the *Required*
pattern EqGADTBag{ unEqGADTBag } = MkGADTBag unEqGADTBag -- without sig infers Eq a only as *Provided*
That is, without that explicit sig:
*> :i EqGADTBag
pattern EqGADTBag :: () => Eq a => [a] -> GADTBag a
The () => Eq a => ... shows Eq a is Provided, arising from the GADT constructor.
Now we get both inferred baz, baz2 :: Eq a => GADTBag a -> Maybe [a] -> Bool:
baz (EqGADTBag x) (Just y) = x == y
baz2 x y = unEqGADTBag x == fromJust y
As a curiosity: it's possible to give those equations for baz, baz2 as well as those in the O.P. using the names from the GADT decl. GHC warns of overlapping patterns [correctly]; and does infer the constrained sig for baz.
I wonder if there's a design pattern here? Don't put constraints on the data constructor -- that is, don't make it a GADT. Instead declare a 'shadow' PatternSynonym with the Required/Provided constraints.
You can capture the constraint in a fold function, (Eq a => ..) says you can assume Eq a but only within the function next (which is defined after a pattern match). If you instantiate next as = fromJust maybe == as it uses this constraint to witness equality
-- local constraint
-- |
-- vvvvvvvvvvvvvvvvvv
foldGADTBag :: (Eq a => [a] -> res) -> GADTBag a -> res
foldGADTBag next (MkGADTBag as) = next as
baz3 :: GADTBag a -> Maybe [a] -> Bool
baz3 gadtBag maybe = foldGADTBag (fromJust maybe ==) gadtBag
type Ty :: Type -> Type
data Ty a where
TyInt :: Int -> Ty Int
TyUnit :: Ty ()
-- locally assume Int locally assume unit
-- | |
-- vvvvvvvvvvvvvvvvvvv vvvvvvvvvvvvv
foldTy :: (a ~ Int => a -> res) -> (a ~ () => res) -> (Ty a -> res)
foldTy int unit (TyInt i) = int i
foldTy int unit TyUnit = unit
eval :: Ty a -> a
eval = foldTy id ()

Generics : run-time ADT for types with instances

Is it possible with Haskell / GHC, to extract an algebraic data type representing all types with Eq and Ord instances ? This would probably need Generics, Typeable, etc.
What I would like is something like :
data Data_Eq_Ord = Data_String String
| Data_Int Int
| Data_Bool Bool
| ...
deriving (Eq, Ord)
For all types known to have instances for Eq and Ord. If it makes the solution easier, we can limit our scope to Ord instances, since Eq is implied by Ord. But is would be interesting to know if constraints intersection is possible.
This data type would be useful because it gives the possibility to use it where Eq and Ord constraints are required, and pattern-match at runtime to refine on types.
I would need this to implement a generic Map Key Value, where Key would be this type, in a Document Indexing library, where the keys and their type is known at run-time. This library is here. For the moment I worked around the issue by defining a data DocIndexKey, and a FieldKey class, but this is not fully satisfactory since it requires boilerplate and can't cover all legit candidates.
Any good alternative approach to this situation is welcome. For some reasons, I prefer to avoid Template Haskell.
Well, it's not an ADT, but this definitely works:
data Satisfying c = forall a. c a => Satisfy a
class (l a, r a) => And l r a where
instance (l a, r a) => And l r a where
ex :: [Satisfying (Typeable `And` Show `And` Ord)]
ex = [ Satisfy (7 :: Int)
, Satisfy "Hello"
, Satisfy (5 :: Int)
, Satisfy [10..20 :: Int]
, Satisfy ['a'..'z']
, Satisfy ((), 'a')]
-- An example of use, with "complicated" logic
data With f c = forall a. c a => With (f a)
-- vvvvvvvvvvvvvvvvvvvvvvvvvv QuantifiedConstraints chokes on this, which is probably a bug...
partitionTypes :: (forall a. c a => TypeRep a) -> [Satisfying c] -> [[] `With` c]
partitionTypes rep = foldr go []
where go (Satisfy x) [] = [With [x]]
go x'#(Satisfy (x :: a)) (xs'#(With (xs :: [b])) : xss) =
case testEquality rep rep :: Maybe (a :~: b) of
Just Refl -> With (x : xs) : xss
Nothing -> xs' : go x' xss
main :: IO ()
main = traverse_ (\(With xs) -> print (sort xs)) $ partitionTypes typeRep ex
Exhaustivity is much harder. Perhaps with a plugin, you could get GHC to do it, but why bother? I don't believe GHC actually tries to keep track of what types it has seen. In particular, you'd have to scan all modules in the project and its dependencies, even those that haven't been loaded by the module containing the type definition. You'd have to implement it from the ground-up. And, as this answer shows, I very much doubt you would actually be able to use such exhaustivity for anything that you can't already do by just taking the open universe as it is.

SystemT Compiler and dealing with Infinite Types in Haskell

I'm following this blog post: http://semantic-domain.blogspot.com/2012/12/total-functional-programming-in-partial.html
It shows a small OCaml compiler program for System T (a simple total functional language).
The entire pipeline takes OCaml syntax (via Camlp4 metaprogramming) transforms them to OCaml AST that is translated to SystemT Lambda Calculus (see: module Term) and then finally SystemT Combinator Calculus (see:
module Goedel). The final step is also wrapped with OCaml metaprogramming Ast.expr type.
I'm attempting to translate it to Haskell without the use of Template Haskell.
For the SystemT Combinator form, I've written it as
{-# LANGUAGE GADTs #-}
data TNat = Zero | Succ TNat
data THom a b where
Id :: THom a a
Unit :: THom a ()
ZeroH :: THom () TNat
SuccH :: THom TNat TNat
Compose :: THom a b -> THom b c -> THom a c
Pair :: THom a b -> THom a c -> THom a (b, c)
Fst :: THom (a, b) a
Snd :: THom (a, b) b
Curry :: THom (a, b) c -> THom a (b -> c)
Eval :: THom ((a -> b), a) b -- (A = B) * A -> B
Iter :: THom a b -> THom (a, b) b -> THom (a, TNat) b
Note that Compose is forward composition, which differs from (.).
During the translation of SystemT Lambda Calculus to SystemT Combinator Calculus, the Elaborate.synth function tries to convert SystemT Lambda calculus variables into series of composed projection expressions (related to De Brujin Indices). This is because combinator calculus doesn't have variables/variable names. This is done with the Elaborate.lookup which uses the Quote.find function.
The problem is that with my encoding of the combinator calculus as the GADT THom a b. Translating the Quote.find function:
let rec find x = function
| [] -> raise Not_found
| (x', t) :: ctx' when x = x' -> <:expr< Goedel.snd >>
| (x', t) :: ctx' -> <:expr< Goedel.compose Goedel.fst $find x ctx'$ >>
Into Haskell:
find :: TVar -> Context -> _
find tvar [] = error "Not Found"
find tvar ((tvar', ttype):ctx)
| tvar == tvar' = Snd
| otherwise = Compose Fst (find tvar ctx)
Results in an infinite type error.
• Occurs check: cannot construct the infinite type: a ~ (a, c)
Expected type: THom (a, c) c
Actual type: THom ((a, c), c) c
The problem stems from the fact that using Compose and Fst and Snd from the THom a b GADT can result in infinite variations of the type signature.
The article doesn't have this problem because it appears to use the Ast.expr OCaml thing to wrap the underlying expressions.
I'm not sure how to resolve in Haskell. Should I be using an existentially quantified type like
data TExpr = forall a b. TExpr (THom a b)
Or some sort of type-level Fix to adapt the infinite type problem. However I'm unsure how this changes the find or lookup functions.
This answer will have to be a bit high-level, because there are three entirely different families of possible designs to fix that problem. What you’re doing seems closer to approach three, but the approaches are ordered by increasing complexity.
The approach in the original post
Translating the original post requires Template Haskell and partiality; find would return a Q.Exp representing some Hom a b, avoiding this problem just like the original post. Just like in the original post, a type error in the original code would be caught when typechecking the output of all the Template Haskell functions. So, type errors are still caught before runtime, but you will still need to write tests to find cases where your macros output ill-typed expressions. One can give stronger guarantees, at the cost of a significant increase in complexity.
Dependent typing/GADTs in input and output
If you want to diverge from the post, one alternative is to use “dependent typing” throughout and make the input dependently-typed. I use the term loosely to include both actually dependently-typed languages, actual Dependent Haskell (when it lands), and ways to fake dependent typing in Haskell today (via GADTs, singletons, and what not).
However, you lose the ability to write your own typechecker and choose which type system to use; typically, you end up embedding a simply-typed lambda calculus, and can simulate polymorphism via polymorphic Haskell functions that can generate terms at a given type. This is easier in dependently-typed languages, but possible at all in Haskell.
But honestly, in this road it’s easier to use higher-order abstract syntax and Haskell functions, with something like:
data Exp a where
Abs :: (Exp a -> Exp b) -> Exp (a -> b)
App :: Exp (a -> b) -> Exp a -> Exp b
Var :: String -> Exp a —- only use for free variables
exampleId :: Exp (a -> a)
exampleId = Abs (\x -> x)
If you can use this approach (details omitted here), you get high assurance from GADTs with limited complexity. However, this approach is too inflexible for many scenarios, for instance because the typing contexts are only visible to the Haskell compiler and not in your types or terms.
From untyped to typed terms
A third option is go dependently-typed and to still make your program turn weakly-typed input to strongly typed output. In this case, your typechecker overall transforms terms of some type Expr into terms of a GADT TExp gamma t, Hom a b, or such. Since you don’t know statically what gamma and t (or a and b) are, you’ll indeed need some sort of existential.
But a plain existential is too weak: to build bigger well-typed expression, you’ll need to check that the produced types allow it. For instance, to build a TExpr containing a Compose expression out of two smaller TExpr, you'll need to check (at runtime) that their types match. And with a plain existential, you can't. So you’ll need to have a representation of types also at the value level.
What's more existentials are annoying to deal with (as usual), since you can’t ever expose the hidden type variables in your return type, or project those out (unlike dependent records/sigma-types).
I am honestly not entirely sure this could eventually be made to work. Here is a possible partial sketch in Haskell, up to one case of find.
data Type t where
VNat :: Type Nat
VString :: Type String
VArrow :: Type a -> Type b -> Type (a -> b)
VPair :: Type a -> Type b -> Type (a, b)
VUnit :: Type ()
data SomeType = forall t. SomeType (Type t)
data SomeHom = forall a b. SomeHom (Type a) (Type b) (THom a b)
type Context = [(TVar, SomeType)]
getType :: Context -> SomeType
getType [] = SomeType VUnit
getType ((_, SomeType ttyp) :: gamma) =
case getType gamma of
SomeType ctxT -> SomeType (VPair ttyp
find :: TVar -> Context -> SomeHom
find tvar ((tvar’, ttyp) :: gamma)
| tvar == tvar’ =
case (ttyp, getType gamma) of
(SomeType t, SomeType ctxT) ->
SomeHom (VPair t ctxT) t Fst

How to convert Dynamic to Forall something

I have a cache with Dynamic values. Some of them have the type Delayed a.
Normally when I access the cache, I know the type a, so it's not a problem, I can use fromDynamic to cast to Maybe a.
I would like to call a function which doesn't need to know anything about the type a on a list of Dynamic. (The method is cancel :: Delay a -> IO ()).
Is there a way to do so ?
Basically I need a way to do get from Dynamic to Forall a . Delayed a ?
Edit
For information, Delayed holds a pending asynchronous value and a MVar to start or Cancel it. It is equivalent to
data Delayed m a = Delayed { blocker :: MVar Bool, async :: Async m a }
Such values are stored in a cache (which use Dynamic and store other things). When displaying the cache status, I need to be able to get the status of Delayed value (which involve accessing the blocker but has nothing to do with the actual value.
A value of type forall a . X a is a value which can be instantiated to any of X Int, X Bool, X String, etc. Presumably, your cache stores values of many different types, but no single value is valid at every possible type parameter. What you actually need is a value of type exists a . Delayed a. However, Haskell doesn't have first-class existential quantifiers, so you must encode that type in some way. One particular encoding is:
castToDelayed :: (forall a . Typeable a => Delayed a -> r) -> Dynamic -> r
Assume that you have this function; then you can simply write castToDelayed cancel :: Dynamic -> IO (). Note that the function parameter to castToDelayed provides a Typeable constraint, but you can freely ignore that constraint (which is what cancel is doing). Also note this function must be partial due to its type alone (clearly not every Dynamic is a Delayed a for some a), so in real code, you should produce e.g. Maybe r instead. Here I will elide this detail and just throw an error.
How you actually write this function will depend on which version of GHC you are using (the most recent, 8.2, or some older version). On 8.2, this is a very nice, simple function:
{-# LANGUAGE ViewPatterns #-}
-- NB: probably requires some other extensions
import Data.Dynamic
import Type.Reflection
castToDelayed :: (forall a . Typeable a => Delayed a -> r) -> Dynamic -> r
castToDelayed k (Dynamic (App (eqTypeRep (typeRep :: TypeRep Delayed) -> Just HRefl) a) x)
= withTypeable a (k x)
castToDelayed _ _ = error "Not a Delayed"
(Aside: at first I thought the Con pattern synonym would be useful here, but on deeper inspection it seems entirely useless. You must use eqTypeRep instead.)
Briefly, this function works as follows:
It pattern matches on the Dynamic value to obtain the actual value (of some existentially quantified type a) stored within, and the representation of its type (of type TypeRep a).
It pattern matches on the TypeRep a to determine if it is an application (using App). Clearly, Delayed a is the application of a type constructor, so that is the first thing we must check.
It compares the type constructor (the first argument to App) to the TypeRep corresponding to Delayed (note you must have an instance Typeable Delayed for this). If that comparison is successful, it pattern matches on the proof (that is Just HRefl) that the first argument to App and Delayed are in fact the same type.
At this point, the compiler knows that a ~ Delayed x for some x. So, you can call the function forall a . Typeable a => Delayed a -> r on the value x :: a. It must also provide the proof that x is Typeable, which is given precisely by a value of type TypeRep x - withTypeable reifies this value-level proof as a type-level constraint (alternatively, you could have the input function take as argument TypeRep a, or just omit the constrain altogether, since your specific use case doesn't need it; but this type is the most general possible).
On older versions, the principle is basically the same. However, TypeRep did not take a type parameter then; you can pattern match on it to discover if it is the TypeRep corresponding to Delayed, but you cannot prove to the compiler that the value stored inside the Dynamic has type Delayed x for some x. It will therefore require unsafeCoerce, at the step where you are applying the function k to the value x. Furthermore, there is no withTypeable before GHC 8.2, so you will have to write the function with type (forall a . Delayed a -> r) -> Dynamic -> r instead (which, fortunately, is enough for your use case); or implement such a function yourself (see the source of the function to see how; the implementation on older versions of GHC will be similar, but will have type TypeRep -> (forall a . Typeable a => Proxy a -> r) -> r instead).
Here is how you implement this in GHC < 8.2 (tested on 8.0.2). It is a horrible hack, and I make no claim it will correctly in all circumstances.
{-# LANGUAGE DeriveDataTypeable, MagicHash, ScopedTypeVariables, PolyKinds, ViewPatterns #-}
import Data.Dynamic
import Data.Typeable
import Unsafe.Coerce
import GHC.Prim (Proxy#)
import Data.Proxy
-- This part reifies a `Typeable' dictionary from a `TypeRep'.
-- This works because `Typeable' is a class with a single field, so
-- operationally `Typeable a => r' is the same as `(Proxy# a -> TypeRep) -> r'
newtype MagicTypeable r (kp :: KProxy k) =
MagicTypeable (forall (a :: k) . Typeable a => Proxy a -> r)
withTypeRep :: MagicTypeable r (kp :: KProxy k)
-> forall a . TypeRep -> Proxy a -> r
withTypeRep d t = unsafeCoerce d ((\_ -> t) :: Proxy# a -> TypeRep)
withTypeable :: forall r . TypeRep -> (forall (a :: k) . Typeable a => Proxy a -> r) -> r
withTypeable t k = withTypeRep (MagicTypeable k) t Proxy
-- The type constructor for Delayed
delayed_tycon = fst $ splitTyConApp $ typeRep (Proxy :: Proxy Delayed)
-- This is needed because Dynamic doesn't export its constructor, and
-- we need to pattern match on it.
data DYNAMIC = Dynamic TypeRep Any
unsafeViewDynamic :: Dynamic -> DYNAMIC
unsafeViewDynamic = unsafeCoerce
-- The actual implementation, much the same as the one on GHC 8.2, but more
-- 'unsafe' things
castToDelayed :: (forall a . Typeable a => Delayed a -> r) -> Dynamic -> r
castToDelayed k (unsafeViewDynamic -> Dynamic t x) =
case splitTyConApp t of
(((== delayed_tycon) -> True), [a]) ->
withTypeable a $ \(_ :: Proxy (a :: *)) -> k (unsafeCoerce x :: Delayed a)
_ -> error "Not a Delayed"
I don't know what Delayed actually is, but lets assume it's defined as follows for testing purposes:
data Delayed a = Some a | None deriving (Typeable, Show)
Then consider this simple test case:
test0 :: Typeable a => Delayed a -> String
test0 (Some x) = maybe "not a String" id $ cast x
test0 None = "None"
test0' =
let c = castToDelayed test0 in
[ c (toDyn (None :: Delayed Int))
, c (toDyn (Some 'a'))
, c (toDyn (Some "a")) ]
Why not define
{-# LANGUAGE ExistentialQuantification #-}
data Delayed' = forall a. Delayed' (Delayed a)
and then store than in the Dynamic? You can then cast it out of the dynamic, case on it, and pass the result to cancel. (Depending on what your use case is you may no longer even need the Dynamic.)

Ambiguous type variables for dependent class constraints

I'm writing a new authentication system for the Snap web framework, because the built-in one isn't modular enough, and it has some features that are redundant/"dead weight" for my application. This problem isn't related to Snap at all, though.
While doing so, I hit a problem with ambiguous type constraints. In the following code, it seems obvious to me that the type of back can only be the type variable b in the functions type, yet GHC complains that the type is ambiguous.
How can I change the following code such that the type of back is b, without using e.g. ScopedTypeVariables (because the problem is with the constraint, not with having too general types)? Is there a functional dependency that is needed somewhere?
Relevant type classes:
data AuthSnaplet b u =
AuthSnaplet
{ _backend :: b
, _activeUser :: Maybe u
}
-- data-lens-template:Data.Lens.Template.makeLens
-- data-lens:Data.Lens.Common.Lens
-- generates: backend :: Lens (AuthSnaplet b u) b
makeLens ''AuthSnaplet
-- Some encrypted password
newtype Password =
Password
{ passwordData :: ByteString
}
-- data-default:Data.Default.Default
class Default u => AuthUser u where
userLogin :: Lens u Text
userPassword :: Lens u Password
class AuthUser u => AuthBackend b u where
save :: MonadIO m => b -> u -> m u
lookupByLogin :: MonadIO m => b -> Text -> m (Maybe u)
destroy :: MonadIO m => b -> u -> m ()
-- snap:Snap.Snaplet.Snaplet
class AuthBackend b u => HasAuth s b u where
authSnaplet :: Lens s (Snaplet (AuthSnaplet b u))
The code that fails:
-- snap:Snap.Snaplet.with :: Lens v (Snaplet v') -> m b v' a -> m b v a
-- data-lens-fd:Data.Lens.access :: MonadState a m => Lens a b -> m b
loginUser :: HasAuth s b u
=> Text -> Text -> Handler a s (Either AuthFailure u)
loginUser uname passwd = with authSnaplet $ do
back <- access backend
maybeUser <- lookupByLogin back uname -- !!! type of back is ambiguous !!!
-- ... For simplicity's sake, let's say the function ends like this:
return . Right . fromJust $ maybeUser
Full error:
src/Snap/Snaplet/Authentication.hs:105:31:
Ambiguous type variables `b0', `u0' in the constraint:
(HasAuth s b0 u0) arising from a use of `authSnaplet'
Probable fix: add a type signature that fixes these type variable(s)
In the first argument of `with', namely `authSnaplet'
In the expression: with authSnaplet
In the expression:
with authSnaplet
$ do { back <- access backend;
maybeUser <- lookupByLogin back uname;
... }
src/Snap/Snaplet/Authentication.hs:107:16:
Ambiguous type variable `b0' in the constraint:
(AuthBackend b0 u) arising from a use of `lookupByLogin'
Probable fix: add a type signature that fixes these type variable(s)
In a stmt of a 'do' expression:
maybeUser <- lookupByLogin back uname
In the second argument of `($)', namely
`do { back <- access backend;
maybeUser <- lookupByLogin back uname;
... }'
In the expression:
with authSnaplet
$ do { back <- access backend;
maybeUser <- lookupByLogin back uname;
... }
I would venture to guess that the root of your problem is in the expression with authSnaplet. Here's why:
∀x. x ⊢ :t with authSnaplet
with authSnaplet
:: AuthUser u => m b (AuthSnaplet b1 u) a -> m b v a
Don't mind the context, I filled in some bogus instances just to load stuff in GHCi. Note the type variables here--lots of ambiguity, and at least two that I expect you intend to be the same type. The easiest way to handle this is probably to create a small, auxiliary function with a type signature that narrows things down a bit, e.g.:
withAuthSnaplet :: (AuthUser u)
=> Handler a (AuthSnaplet b u) (Either AuthFailure u)
-> Handler a s (Either AuthFailure u)
withAuthSnaplet = with authSnaplet
Again, pardon the nonsense, I don't actually have Snap installed at the moment, which makes things awkward. Introducing this function, and using it in place of with authSnaplet in loginUser, allows the code to type check for me. You may need to tweak things a bit to handle your actual instance constraints.
Edit: If the above technique doesn't let you nail down b by some means, and assuming that the types really are intended to be as generic as they're written, then b is impossibly ambiguous and there's no way around it.
Using with authSnaplet eliminates b entirely from the actual type, but leaves it polymorphic with a class constraint on it. This is the same ambiguity that an expression like show . read has, with instance-dependent behavior but no way to pick one.
To avoid this, you have roughly three choices:
Retain the ambiguous type explicitly, so that b is found somewhere in the actual type of loginUser, not just the context. This may be undesirable for other reasons in the context of your application.
Remove the polymorphism, by only applying with authSnaplet to suitably monomorphic values. If the types are known in advance, there's no room for ambiguity. This potentially means giving up some polymorphism in your handlers, but by breaking things apart you can limit the monomorphism to only code that cares what b is.
Make the class constraints themselves unambiguous. If the three type parameters to HasAuth are, in practice, interdependent to some degree such that there will only be one valid instance for any s and u, then a functional dependency from the others to b would be completely appropriate.

Resources