How spinlock prevents the process to be interrupted? - multithreading

I read an answer on this site says the spin-lock reduce the overhead with context switches, and after that I read an textbook statement related to this:
Spin-lock makes a busy waiting program not be interrupted.
My question is on the title.
Since the book uses while-loop to indicate the implementation of the spin part of a spin-lock, the following is my reasoning trying to explain myself with this consideration.
This sounds like if there is a program with a busy waiting while loop then all the others program(processes) won't be executed forever, but won't this make a multiprogramming environment broken down, since the others processes can no longer to be executed after certain time interval has past? But I remember that the OS will prevent any process from dominate the CPU forever?
Or this is generally true in most architecture so it's not recommended since the degree of multiprogramming decrease, or one has to know precisely how long it will stop? Sorry for vague question but what I typed is exactly the same as the book states.
For more details about my confusion: I think for a given while loop
while (this == true);
is nothing more than the expended version
if (this == true);
if (this == true);
if (this == true);
...
...
if (this == true); // (*)
...
...
if (this == true);
...
So why it won't be interrupted at some (*) step above, for some reason like the time interval for the process is ended and another process is chosen from the ready queue?

A spinlock really prevents the process to be interrupted by other processes. Implementation of this prevention is OS-specific: since OS by itself performs process scheduling, it is able to mark the process as "cannot be rescheduled".
But you ask about whether it is fair for other processes to mark the one as uninterruptible. Actually, there are 2 (at least) notions of "spinlock": one for kernel space threads, and one for user-space threads:
Kernel processes, as part of OS kernel, trusts themselves: if one process acquire spinlock, it expects to release it in a short time. Once the spinlock is released, the process is no longer treated as uninterruptible and can be switched from.
Most books which describes spinlocks talk about kernel (trusted) processes.
User processes, in opposite, do not "trust" themselves. This is why a "true" spinlock, which renders a process as uninterruptible for an infinite time, is not provided for user processes. At most, OS provides hybrid version of a spinlock and a mutex: during the short period of time the process, which tries to grab a spinlock, is actually rendered as uninterruptible. But if the time expires before the process acquires the spinlock, the process is moved to the waiting state, allowing other processes to be run on the same core. So "fairness" is provided.
Actually, "true" spinlock renders the process as uninterruptible not only while it waits, but also while it holds the spinlock. It is required for avoiding deadlocks. This is works for kernel processes (which trusts themselves). As for user processes, OS may give for the process some (also short) time of uninterruptible state until it releases the spinlock. If the time expires before spinlock is released, the process becomes interruptible again.

Related

Context switch between kernel threads vs user threads

Copy pasted from this link:
Thread switching does not require Kernel mode privileges.
User level threads are fast to create and manage.
Kernel threads are generally slower to create and manage than the user threads.
Transfer of control from one thread to another within the same process requires a mode switch to the Kernel.
I never came across these points while reading standard operating systems reference books. Though these points sound logical, I wanted to know how they reflect in Linux. To be precise :
Can someone give detailed steps involved in context switching between user threads and kernel threads, so that I can find the step difference between the two.
Can someone explain the difference with actual context switch example or code. May be system calls involved (in case of context switching between kernel threads) and thread library calls involved (in case of context switching between user threads).
Can someone link me to Linux source code line (say on github) handling context switch.
I also doubt why context switch between kernel threads requires changing to kernel mode. Aren't we already in kernel mode for first thread?
Can someone give detailed steps involved in context switching between user threads and kernel threads, so that I can find the step difference between the two.
Let's imagine a thread needs to read data from a file, but the file isn't cached in memory and disk drives are slow so the thread has to wait; and for simplicity let's also assume that the kernel is monolithic.
For kernel threading:
thread calls a "read()" function in a library or something; which must cause at least a switch to kernel code (because it's going to involve device drivers).
the kernel adds the IO request to the disk driver's "queue of possibly many pending requests"; realizes the thread will need to wait until the request completes, sets the thread to "blocked waiting for IO" and switches to a different thread (that may belong to a completely different process, depending on global thread priorities). The kernel returns to the user-space of whatever thread it switch to.
later; the disk hardware causes an IRQ which causes a switch back to the IRQ handler in kernel code. The disk driver finishes up the work it had to do the for (currently blocked) thread and unblocks that thread. At this point the kernel might decide to switch to the "now unblocked" thread; and the kernel returns to the user-space of the "now unblocked" thread.
For user threading:
thread calls a "read()" function in a library or something; which must cause at least a switch to kernel code (because it's going to involve device drivers).
the kernel adds the IO request to the disk driver's "queue of possibly many pending requests"; realizes the thread will need to wait until the request completes but can't take care of that because some fool decided to make everything worse by doing thread switching in user space, so the kernel returns to user-space with "IO request has been queued" status.
after the pointless extra overhead of switching back to user-space; the user-space scheduler does the thread switch that the kernel could have done. At this point the user-space scheduler will either tell kernel it has nothing to do and you'll have more pointless extra overhead switching back to kernel; or user-space scheduler will do a thread switch to another thread in the same process (which may be the wrong thread because a thread in a different process is higher priority).
later; the disk hardware causes an IRQ which causes a switch back to the IRQ handler in kernel code. The disk driver finishes up the work it had to do for the (currently blocked) thread; but the kernel isn't able to do the thread switch to unblock the thread because some fool decided to make everything worse by doing thread switching in user space. Now we've got a problem - how does kernel inform the user-space scheduler that the IO has finished? To solve this (without any "user-space scheduler running zero threads constantly polls kernel" insanity) you have to have some kind of "kernel puts notification of IO completion on some kind of queue and (if the process was idle) wakes the process up" which (on its own) will be more expensive than just doing the thread switch in the kernel. Of course if the process wasn't idle then code in user-space is going to have to poll its notification queue to find out if/when the "notification of IO completion" arrives, and that's going to increase latency and overhead. In any case, after lots of stupid pointless and avoidable overhead; the user-space scheduler can do the thread switch.
Can someone explain the difference with actual context switch example or code. May be system calls involved (in case of context switching between kernel threads) and thread library calls involved (in case of context switching between user threads).
The actual low-level context switch code typically begins with something like:
save whichever registers are "caller preserved" according to the calling conventions on the stack
save the current stack top in some kind of "thread info structure" belonging to the old thread
load a new stack top from some kind of "thread info structure" belonging to the new thread
pop whichever registers are "caller preserved" according to the calling conventions
return
However:
usually (for modern CPUs) there's a relatively large amount of "SIMD register state" (e.g. for 80x86 with support for AVX-512 I think it's over 4 KiB of of stuff). CPU manufacturers often have mechanisms to avoid saving parts of that state if it wasn't changed, and to (optionally) postpone the loading of (pieces of) that state until its actually used (and avoid it completely if its not actually used). All of that requires kernel.
if it's a task switch and not just used for thread switches you might need some kind of "if virtual address space needs to change { change virtual address space }" on top of that
normally you want to keep track of statistics, like how much CPU time a thread has used. This requires some kind of "thread_info.time_used += now() - time_at_last_thread_switch;"; which gets difficulty/ugly when "process switching" is separated from "thread switching".
normally there's other state (e.g. pointer to thread local storage, special registers for performance monitoring and/or debugging, ...) that may need to be saved/loaded during thread switches. Often this state is not directly accessible in user code.
normally you also want to set a timer to expire when the thread has used too much time; either because you're doing some kind of "time multiplexing" (e.g. round-robin scheduler) or because its a cooperating scheduler where you need to have some kind of "terminate this task after 5 seconds of not responding in case it goes into an infinite loop forever" safe-guard.
this is just the low level task/thread switching in isolation. There is almost always higher level code to select a task to switch to, handle "thread used too much CPU time", etc.
Can someone link me to Linux source code line (say on github) handling context switch
Someone probably can't. It's not one line; it's many lines of assembly for each different architecture, plus extra higher-level code (for timers, support routines, the "select a task to switch to" code, for exception handlers to support "lazy SIMD state load", ...); which probably all adds up to something like 10 thousand lines of code spread across 50 files.
I also doubt why context switch between kernel threads requires changing to kernel mode. Aren't we already in kernel mode for first thread?
Yes; often you're already in kernel code when you find out that a thread switch is needed.
Rarely/sometimes (mostly only due to communication between threads belonging to the same process - e.g. 2 or more threads in the same process trying to acquire the same mutex/semaphore at the same time; or threads sending data to each other and waiting for data from each other to arrive) kernel isn't involved; and in some cases (which are almost always massive design failures - e.g. extreme lock contention problems, failure to use "worker thread pools" to limit the number of threads needed, etc) it's possible for this to be the dominant cause of thread switches, and therefore possible that doing thread switches in user space can be beneficial (e.g. as a work-around for the massive design failures).
Don't limit yourself to Linux or even UNIX, they are neither the first nor last word on systems or programming models. The synchronous execution model dates back to the early days of computing, and are not particularly well suited to larger scale concurrent and reactive programming.
Golang, for example, employs a great many lightweight user threads -- goroutines -- and multiplexes them on a smaller set of heavyweight kernel threads to produce a more compelling concurrency paradigm. Some other programming systems take similar approaches.

What guarantee thread with spin lock on multiprocessor run on a different processor

I know spin lock only works on multiprocessor. But if two threads try to acquire the same resource and one is put on spinlock, what prevents the other one not running on the same processor? If it happens the one with spin lock will prevent the one holding the resources to exceed. In this case it becomes a deadlock. How does OS prevent it happen?
Some background facts first:
spin-locks (and locks generally) are not limited to multiprocessor systems. They work fine on single processor or even single-threaded application can use them without any harm.
spin-locks are not only provided by OS, they have pure user-space implementation as well. For example, tbb provides tbb::spin_mutex.
By default, nothing prevents a thread from running on any available CPU (regardless of the locks they use).
There are reentrant/recursive type of locks. It means that if a thread acquired it once, and tries to acquire it once again without releasing, it will succeed, not deadlock as usual locks. But it does not mean that the same applies to different threads just because they are scheduled to the same CPU. With any type of lock, if one software thread locked a mutex, other threads have to wait.
It is possible for one thread to acquire the lock and be preempted (i.e. interrupted by OS timer) before it releases the lock. Another thread can be scheduled to the same CPU and it might want to acquire the same lock. In case of pure spin-locks, this thread will uselessly spin until it exceeds its time-slice allowed by OS and will be preempted. Finally, the first thread will get a chance to run and release its lock so another thread will be able to acquire it.
As you can see, it is not quite efficient to spent the time on the hopeless waiting. Thus, more sophisticated implementations, after a number of attempts to acquire the spinlock, call OS for help in order to voluntary give away its time-slice to other threads which possibly can unlock the current one.

Pthread Concepts

I'm studying threads and I am not sure if I understand some concepts. What is the difference between preemption and yield? So far I know that preemption is a forced yield but I am not sure what it actually means.
Thanks for your help.
Preemption is when one thread stops another thread from running so that it may run.
To yield is when a thread voluntarily gives up processor time.
Have a gander at these...
http://en.wikipedia.org/wiki/Preemption_(computing)
http://en.wikipedia.org/wiki/Thread_(computing)
The difference is how the OS is entered.
'yield' is a software interrupt AKA system call, one of the many that may result in a change in the set of running threads, (there are lots of other system calls that can do this - blocking reads, synchronization calls). yield() is called from a running thread and may result in another ready, (but not running), thread of the same priority being run instead of the calling thread - if there is one.
The exact behaviour of yield() is somewhat hardware/OS/language-dependent. Unless you are developing low-level lock-free thread comms mechanisms, and you are very good at it, it's best to just forget about yield().
Preemption is the act of interrupting one thread and dispatching another in its place. It can only occur after a hardware interrupt. When hardware interrupts, its driver is entered. The driver may decide that it can usefully make a thread ready, (eg. a thread is blocked on a read() call to the driver and the driver has accumulated a nice, big buffer of data). The driver can do this by signaling a semaphore and exiting via. the OS, (which provides an entry point for just such a purpose). This driver exit path causes a reschedule and, probably, makes the read thread running instead of some other thread that was running before the interrupt - the other thread has been preempted. Essentially and simply, preemption occurs when the OS decides to interrupt-return to a different set of threads than the one that was interrupted.
Yield: The thread calls a function in the scheduler, which potentially "parks" that thread, and starts another one. The other thread is one which called yield earlier, and now appears to return from it. Many functions can have yielding semantics, such as reading from a device.
Preempt: an external event comes into the system: some kind of interrupt (clock, network data arriving, disk I/O completing ...). Whichever thread is running at that time is suspended, and the machine is running operating system code the interrupt context. When the interrupt is serviced, and it's time to return from the interrupt, a scheduling decision can be made to keep the interrupted thread parked, and instead resume another one. That is a preemption. If/when that original thread gets to run again, the context which was saved by the interrupt will be activated and it will pick up exactly where it left off.
Scheduling systems which rely on yield exclusively are called "cooperative" or "cooperative multitasking" as opposed to "preemptive".
Traditional (read: old, 1970's and 80's) Unix is cooperatively multitasked in the kernel, with a preemptive user space. The kernel routines are trusted to yield in a reasonable time, and so preemption is disabled when running kernel code. This greatly simplifies kernel coding and improves reliability, at the expense of performance, especially when multiple processors are introduced. Linux was like this for many years.

Mutex lock: what does "blocking" mean?

I've been reading up on multithreading and shared resources access and one of the many (for me) new concepts is the mutex lock. What I can't seem to find out is what is actually happening to the thread that finds a "critical section" is locked. It says in many places that the thread gets "blocked", but what does that mean? Is it suspended, and will it resume when the lock is lifted? Or will it try again in the next iteration of the "run loop"?
The reason I ask, is because I want to have system supplied events (mouse, keyboard, etc.), which (apparantly) are delivered on the main thread, to be handled in a very specific part in the run loop of my secondary thread. So whatever event is delivered, I queue in my own datastructure. Obviously, the datastructure needs a mutex lock because it's being modified by both threads. The missing puzzle-piece is: what happens when an event gets delivered in a function on the main thread, I want to queue it, but the queue is locked? Will the main thread be suspended, or will it just jump over the locked section and go out of scope (losing the event)?
Blocked means execution gets stuck there; generally, the thread is put to sleep by the system and yields the processor to another thread. When a thread is blocked trying to acquire a mutex, execution resumes when the mutex is released, though the thread might block again if another thread grabs the mutex before it can.
There is generally a try-lock operation that grab the mutex if possible, and if not, will return an error. But you are eventually going to have to move the current event into that queue. Also, if you delay moving the events to the thread where they are handled, the application will become unresponsive regardless.
A queue is actually one case where you can get away with not using a mutex. For example, Mac OS X (and possibly also iOS) provides the OSAtomicEnqueue() and OSAtomicDequeue() functions (see man atomic or <libkern/OSAtomic.h>) that exploit processor-specific atomic operations to avoid using a lock.
But, why not just process the events on the main thread as part of the main run loop?
The simplest way to think of it is that the blocked thread is put in a wait ("sleeping") state until the mutex is released by the thread holding it. At that point the operating system will "wake up" one of the threads waiting on the mutex and let it acquire it and continue. It's as if the OS simply puts the blocked thread on a shelf until it has the thing it needs to continue. Until the OS takes the thread off the shelf, it's not doing anything. The exact implementation -- which thread gets to go next, whether they all get woken up or they're queued -- will depend on your OS and what language/framework you are using.
Too late to answer but I may facilitate the understanding. I am talking more from implementation perspective rather than theoretical texts.
The word "blocking" is kind of technical homonym. People may use it for sleeping or mere waiting. The term has to be understood in context of usage.
Blocking means Waiting - Assume on an SMP system a thread B wants to acquire a spinlock held by some other thread A. One of the mechanisms is to disable preemption and keep spinning on the processor unless B gets it. Another mechanism probably, an efficient one, is to allow other threads to use processor, in case B does not gets it in easy attempts. Therefore we schedule out thread B (as preemption is enabled) and give processor to some other thread C. In this case thread B just waits in the scheduler's queue and comes back with its turn. Understand that B is not sleeping just waiting rather passively instead of busy-wait and burning processor cycles. On BSD and Solaris systems there are data-structures like turnstiles to implement this situation.
Blocking means Sleeping - If the thread B had instead made system call like read() waiting data from network socket, it cannot proceed until it gets it. Therefore, some texts casually use term blocking as "... blocked for I/O" or "... in blocking system call". Actually, thread B is rather sleeping. There are specific data-structures known as sleep queues - much like luxury waiting rooms on air-ports :-). The thread will be woken up when OS detects availability of data, much like an attendant of the waiting room.
Blocking means just that. It is blocked. It will not proceed until able. You don't say which language you're using, but most languages/libraries have lock objects where you can "attempt" to take the lock and then carry on and do something different depending on whether you succeeded or not.
But in, for example, Java synchronized blocks, your thread will stall until it is able to acquire the monitor (mutex, lock). The java.util.concurrent.locks.Lock interface describes lock objects which have more flexibility in terms of lock acquisition.

prevent linux thread from being interrupted by scheduler

How do you tell the thread scheduler in linux to not interrupt your thread for any reason? I am programming in user mode. Does simply locking a mutex acomplish this? I want to prevent other threads in my process from being scheduled when a certain function is executing. They would block and I would be wasting cpu cycles with context switches. I want any thread executing the function to be able to finish executing without interruption even if the threads' timeslice is exceeded.
How do you tell the thread scheduler in linux to not interrupt your thread for any reason?
Can't really be done, you need a real time system for that. The closes thing you'll get with linux is to
set the scheduling policy to a realtime scheduler, e.g. SCHED_FIFO, and also set the PTHREAD_EXPLICIT_SCHED attribute. See e.g. here , even now though, e.g. irq handlers and other other stuff will interrupt your thread and run.
However, if you only care about the threads in your own process not being able to do anything, then yes, having them block on a mutex your running thread holds is sufficient.
The hard part is to coordinate all the other threads to grab that mutex whenever your thread needs to do its thing.
You should architect your sw so you're not dependent on the scheduler doing the "right" thing from your app's point of view. The scheduler is complicated. It will do what it thinks is best.
Context switches are cheap. You say
I would be wasting cpu cycles with context switches.
but you should not look at it that way. Use the multi-threaded machinery of mutexes and blocked / waiting processes. The machinery is there for you to use...
You can't. If you could what would prevent your thread from never releasing the request and starving other threads.
The best you can do is set your threads priority so that the scheduler will prefer it over lower priority threads.
Why not simply let the competing threads block, then the scheduler will have nothing left to schedule but your living thread? Why complicate the design second guessing the scheduler?
Look into real time scheduling under Linux. I've never done it, but if you indeed do NEED this this is as close as you can get in user application code.
What you seem to be scared of isn't really that big of a deal though. You can't stop the kernel from interrupting your programs for real interrupts or of a higher priority task wants to run, but with regular scheduling the kernel does uses it's own computed priority value which pretty much handles most of what you are worried about. If thread A is holding resource X exclusively (X could be a lock) and thread B is waiting on resource X to become available then A's effective priority will be at least as high as B's priority. It also takes into account if a process is using up lots of cpu or if it is spending lots of time sleeping to compute the priority. Of course, the nice value goes in there too.

Resources