GHC stuck due to UndecidableSuperClasses - expected behaviour or bug? - haskell

The following snippet makes GHC (checked with 8.6.2 & 8.4.4) stuck during compilation:
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE UndecidableSuperClasses #-}
import GHC.Exts (Constraint)
data T = T
type family F t (c :: * -> Constraint) :: Constraint
type instance F T c = c T
class F t C => C t where
t :: C T => t
t = undefined
I think that it gets stuck because for t GHC tries to find C T, which leads to F T C which expands via type family F back to C T, which is what it was looking for (infinite loop).
I suppose that theoretically GHC could tell that it reached its quest for C T from itself and that anything that depends on itself can work fine recursively, or am I misunderstanding something?
Side note: in the real example where I stumbled upon this behaviour I was able to achieve what I wanted without the compiler being stuck by replacing UndecidableSuperClasses with Data.Constraint.Dict instead.

UndecidableSuperClasses does not make instance resolution lazy. The compiler will still expand superclass constraints as far as possible. I believe that the fields in instance dictionaries that point to the superclass dictionaries are strict, and GHC actually pins them down at compile time. This is in contrast to UndecidableInstances, which allows instance constraints to be treated (a bit) lazily.
deriving instance Show (f (Fix f)) => Show (Fix f)
will work just fine. When resolving an instance for, e.g., Show (Fix Maybe)), GHC will see that it needs Show (Maybe (Fix Maybe)). It then sees it needs Show (Fix Maybe) (which it's currently resolving) and accept that thanks to UndecidableInstances.
All UndecidableSuperClases does is disable the checks that guarantee that expansion won't loop. See the bit near the beginning of Ed Kmett's talk where he describes the process "reaching a fixed point".
Consider a working example (ripped from Data.Constraint.Forall):
type family Skolem (p :: k -> Constraint) :: k
class p (Skolem p) => Forall (p :: k -> Constraint)
GHC only accepts this with UndecidableSuperclasses. Why? Because it doesn't know anything about what that constraint might mean. As far as it knows, it could be the case that p (Skolem p) will reduce to Forall p. And that could actually happen!
class Forall P => P x
-- This definition loops the type checker
foo :: P x => x
foo = undefined

Related

How to 'show' unshowable types?

I am using data-reify and graphviz to transform an eDSL into a nice graphical representation, for introspection purposes.
As simple, contrived example, consider:
{-# LANGUAGE GADTs #-}
data Expr a where
Constant :: a -> Expr a
Map :: (other -> a) -> Expr a -> Expr a
Apply :: Expr (other -> a) -> Expr a -> Expr a
instance Functor Expr where
fmap fun val = Map fun val
instance Applicative Expr where
fun_expr <*> data_expr = Apply fun_expr data_expr
pure val = Constant val
-- And then some functions to optimize an Expr AST, evaluate Exprs, etc.
To make introspection nicer, I would like to print the values which are stored inside certain AST nodes of the DSL datatype.
However, in general any a might be stored in Constant, even those that do not implement Show. This is not necessarily a problem since we can constrain the instance of Expr like so:
instance Show a => Show (Expr a) where
...
This is not what I want however: I would still like to be able to print Expr even if a is not Show-able, by printing some placeholder value (such as just its type and a message that it is unprintable) instead.
So we want to do one thing if we have an a implementing Show, and another if a particular a does not.
Furthermore, the DSL also has the constructors Map and Apply which are even more problematic. The constructor is existential in other, and thus we cannot assume anything about other, a or (other -> a). Adding constraints to the type of other to the Map resp. Apply constructors would break the implementation of Functor resp. Applicative which forwards to them.
But here also I'd like to print for the functions:
a unique reference. This is always possible (even though it is not pretty as it requires unsafePerformIO) using System.Mem.StableName.
Its type, if possible (one technique is to use show (typeOf fun), but it requires that fun is Typeable).
Again we reach the issue where we want to do one thing if we have an f implementing Typeable and another if f does not.
How to do this?
Extra disclaimer: The goal here is not to create 'correct' Show instances for types that do not support it. There is no aspiration to be able to Read them later, or that print a != print b implies a != b.
The goal is to print any datastructure in a 'nice for human introspection' way.
The part I am stuck at, is that I want to use one implementation if extra constraints are holding for a resp. (other -> a), but a 'default' one if these do not exist.
Maybe type classes with FlexibleInstances, or maybe type families are needed here? I have not been able to figure it out (and maybe I am on the wrong track all together).
Not all problems have solutions. Not all constraint systems have a satisfying assignment.
So... relax the constraints. Store the data you need to make a sensible introspective function in your data structure, and use functions with type signatures like show, fmap, pure, and (<*>), but not exactly equal to them. If you need IO, use IO in your type signature. In short: free yourself from the expectation that your exceptional needs fit into the standard library.
To deal with things where you may either have an instance or not, store data saying whether you have an instance or not:
data InstanceOrNot c where
Instance :: c => InstanceOrNot c
Not :: InstanceOrNot c
(Perhaps a Constraint-kinded Either-alike, rather than Maybe-alike, would be more appropriate. I suspect as you start coding this you will discover what's needed.) Demand that clients that call notFmap and friends supply these as appropriate.
In the comments, I propose parameterizing your type by the constraints you demand, and giving a Functor instance for the no-constraints version. Here's a short example showing how that might look:
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleInstances #-}
import Data.Kind
type family All cs a :: Constraint where
All '[] a = ()
All (c:cs) a = (c a, All cs a)
data Lol cs a where
Leaf :: a -> Lol cs a
Fmap :: All cs b => (a -> b) -> Lol cs a -> Lol cs b
instance Functor (Lol '[]) where
fmap f (Leaf a) = Leaf (f a)
fmap f (Fmap g garg) = Fmap (f . g) garg
Great timing! Well-typed recently released a library which allows you to recover runtime information. They specifically have an example of showing arbitrary values. It's on github at https://github.com/well-typed/recover-rtti.
It turns out that this is a problem which has been recognized by multiple people in the past, known as the 'Constrained Monad Problem'. There is an elegant solution, explained in detail in the paper The Constrained-Monad Problem by Neil Sculthorpe and Jan Bracker and George Giorgidze and Andy Gill.
A brief summary of the technique: Monads (and other typeclasses) have a 'normal form'. We can 'lift' primitives (which are constrained any way we wish) into this 'normal form' construction, itself an existential datatype, and then use any of the operations available for the typeclass we have lifted into. These operations themselves are not constrained, and thus we can use all of Haskell's normal typeclass functions.
Finally, to turn this back into the concrete type (which again has all the constraints we are interested in) we 'lower' it, which is an operation that takes for each of the typeclass' operations a function which it will apply at the appropriate time.
This way, constraints from the outside (which are part of the functions supplied to the lowering) and constraints from the inside (which are part of the primitives we lifted) are able to be matched, and finally we end up with one big happy constrained datatype for which we have been able to use any of the normal Functor/Monoid/Monad/etc. operations.
Interestingly, while the intermediate operations are not constrained, to my knowledge it is impossible to write something which 'breaks' them as this would break the categorical laws that the typeclass under consideration should adhere to.
This is available in the constrained-normal Hackage package to use in your own code.
The example I struggled with, could be implemented as follows:
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE UndecidableInstances #-}
module Example where
import Data.Dynamic
import Data.Kind
import Data.Typeable
import Control.Monad.ConstrainedNormal
-- | Required to have a simple constraint which we can use as argument to `Expr` / `Expr'`.
-- | This is definitely the part of the example with the roughest edges: I have yet to figure out
-- | how to make Haskell happy with constraints
class (Show a, Typeable a) => Introspectable a where {}
instance (Show a, Typeable a) => Introspectable a where {}
data Expr' (c :: * -> Constraint) a where
C :: a -> Expr' c a
-- M :: (a -> b) -> Expr' a -> Expr' b --^ NOTE: This one is actually never used as ConstrainedNormal will use the 'free' implementation based on A + C.
A :: c a => Expr' c (a -> b) -> Expr' c a -> Expr' c b
instance Introspectable a => Show (Expr' Introspectable a) where
show e = case e of
C x -> "(C " ++ show x ++ ")"
-- M f x = "(M " ++ show val ++ ")"
A fx x -> "(A " ++ show (typeOf fx) ++ " " ++ show x ++ ")"
-- | In user-facing code you'd not want to expose the guts of this construction
-- So let's introduce a 'wrapper type' which is what a user would normally interact with.
type Expr c a = NAF c (Expr' c) a
liftExpr :: c a => Expr' c a -> Expr c a
liftExpr expr = liftNAF expr
lowerExpr :: c a => Expr c a -> Expr' c a
lowerExpr lifted_expr = lowerNAF C A lifted_expr
constant :: Introspectable a => a -> Expr c a
constant val = pure val -- liftExpr (C val)
You could now for instance write
ghci> val = constant 10 :: Expr Introspectable Int
(C 10)
ghci> (+2) <$> val
(C 12)
ghci> (+) <$> constant 10 <*> constant 32 :: Expr Introspectable Int
And by using Data.Constraint.Trivial (part of the trivial-constrained library, although it is also possible to write your own 'empty constrained') one could instead write e.g.
ghci> val = constant 10 :: Expr Unconstrained Int
which will work just as before, but now val cannot be printed.
The one thing I have not yet figured out, is how to properly work with subsets of constraints (i.e. if I have a function that only requires Show, make it work with something that is Introspectable). Currently everything has to work with the 'big' set of constraints.
Another minor drawback is of course that you'll have to annotate the constraint type (e.g. if you do not want constraints, write Unconstrained manually), as GHC will otherwise complain that c0 is not known.
We've reached the goal of having a type which can be optionally be constrained to be printable, with all machinery that does not need printing to work also on all instances of the family of types including those that are not printable, and the types can be used as Monoids, Functors, Applicatives, etc just as you like.
I think it is a beautiful approach, and want to commend Neil Sculthorpe et al. for their work on the paper and the constrained-normal library that makes this possible. It's very cool!

How do the various "..Instances" pragma's work together, and is there a way around my current problem?

Consider the following code:
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
class X a
class Y a
instance Y Bool
instance (Y a) => X a
instance {-# OVERLAPPING #-} X Int
f :: (X a) => a -> a
f x = x
These LANGUAGE pragma's are needed to write the above instances.
Now, say we want to write a function g:
g :: (Y a) => a -> a
g = f
Without IncoherentInstances or adding {-# INCOHERENT #-} to one of the instances, this doesn't typecheck.
But when we do add this, and ask ghci
ghci> :t f
f :: Y a => a -> a
Suddenly the type of 'f' changed?
With this small example, programs still typecheck when I give f an Int (indicating that the above would be merely a 'visual bug', but in a bigger example the same does not typecheck, giving me an error like:
Could not deduce (Y a) arising from a use of 'f
(...)
from the context: (..., X a, ...)
This also happens when we say
h = f
and try to call h with an Int
:type f does not report the type of the defined entity f. It reports the type of the expression f. GHC tries really hard to stamp polymorphism out of expressions. In particular, using f in an expression triggers simplification of the X a constraint (as does using any definition with a constraint). Without IncoherentInstances, GHC refrains from using instance Y a => X a, because there is another instance that overlaps it, so GHC needs to wait to see which one it should use. This ensures coherence; the only X Int instance that is ever used is the explicitly "specialized" one. With IncoherentInstances, you say that you don't care about coherence, so GHC goes ahead and simplifies X a to Y a using the polymorphic instance whenever f appears in an expression. The weird behavior you see where sometimes GHC is OK with using X Int and sometimes complains that there is no Y Int is a result of GHC making different internal decisions about when it wants to simplify constraints (you did ask for incoherence!). The command for seeing the type of a definition is :type +v. :type +v f should show the type of f "as declared". Hopefully, you can also see that IncoherentInstances is a bad idea. Don't use it.

Constraint on method depends on instances in scope?

Consider this code:
{-# language FlexibleInstances, UndecidableInstances #-}
module Y where
class C m where
x :: m
instance {-# overlappable #-} Monoid m => C m where
x = mempty
instance C Int where
x = 53
What is the type of x?
λ :type x
x :: C m => m
So far — so good. Now remove the Int instance. What is the type of x?
λ :type x
x :: Monoid m => m
Surprise!
Why is this happening?
This behaviour is explained in the following blog post:
Opaque constraint synonyms
In short: GHC is smart enough to see that you have only one instance of the C typeclass and decided that it's the only possible instance, so every time it sees C m constraint, it replaces it with Monoid m because they are equivalent.
N.B. As #chi further explains in a comment:
When GHC finds a constraint C t, it tries to solve it. If if finds a matching instance (...) => C t where ..., the constraint is replaced with the context (...). This is repeated as much as possible. The final constraint appears in the type (or triggers a "unsolved" type error). This process is justified since there can only be at most one matching instance. Overlapping instances change this, and prevent this context reduction when multiple instances (in scope!) match, roughly. It is a fragile extension, to be used with some care.

Is there a way to show "showable" stuff [duplicate]

Suppose I have a simple data type in Haskell for storing a value:
data V a = V a
I want to make V an instance of Show, regardless of a's type. If a is an instance of Show, then show (V a) should return show a otherwise an error message should be returned. Or in Pseudo-Haskell:
instance Show (V a) where
show (V a) = if a instanceof Show
then show a
else "Some Error."
How could this behaviour be implemented in Haskell?
As I said in a comment, the runtime objects allocated in memory don't have type tags in a Haskell program. There is therefore no universal instanceof operation like in, say, Java.
It's also important to consider the implications of the following. In Haskell, to a first approximation (i.e., ignoring some fancy stuff that beginners shouldn't tackle too soon), all runtime function calls are monomorphic. I.e., the compiler knows, directly or indirectly, the monomorphic (non-generic) type of every function call in an executable program. Even though your V type's show function has a generic type:
-- Specialized to `V a`
show :: V a -> String -- generic; has variable `a`
...you can't actually write a program that calls the function at runtime without, directly or indirectly, telling the compiler exactly what type a will be in every single call. So for example:
-- Here you tell it directly that `a := Int`
example1 = show (V (1 :: Int))
-- Here you're not saying which type `a` is, but this just "puts off"
-- the decision—for `example2` to be called, *something* in the call
-- graph will have to pick a monomorphic type for `a`.
example2 :: a -> String
example2 x = show (V x) ++ example1
Seen in this light, hopefully you can spot the problem with what you're asking:
instance Show (V a) where
show (V a) = if a instanceof Show
then show a
else "Some Error."
Basically, since the type for the a parameter will be known at compilation time for any actual call to your show function, there's no point to testing for this type at runtime—you can test for it at compilation time! Once you grasp this, you're led to Will Sewell's suggestion:
-- No call to `show (V x)` will compile unless `x` is of a `Show` type.
instance Show a => Show (V a) where ...
EDIT: A more constructive answer perhaps might be this: your V type needs to be a tagged union of multiple cases. This does require using the GADTs extension:
{-# LANGUAGE GADTs #-}
-- This definition requires `GADTs`. It has two constructors:
data V a where
-- The `Showable` constructor can only be used with `Show` types.
Showable :: Show a => a -> V a
-- The `Unshowable` constructor can be used with any type.
Unshowable :: a -> V a
instance Show (V a) where
show (Showable a) = show a
show (Unshowable a) = "Some Error."
But this isn't a runtime check of whether a type is a Show instance—your code is responsible for knowing at compilation time where the Showable constructor is to be used.
You can with this library: https://github.com/mikeizbicki/ifcxt. Being able to call show on a value that may or may not have a Show instance is one of the first examples it gives. This is how you could adapt that for V a:
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
import IfCxt
import Data.Typeable
mkIfCxtInstances ''Show
data V a = V a
instance forall a. IfCxt (Show a) => Show (V a) where
show (V a) = ifCxt (Proxy::Proxy (Show a))
(show a)
"<<unshowable>>"
This is the essence of this library:
class IfCxt cxt where
ifCxt :: proxy cxt -> (cxt => a) -> a -> a
instance {-# OVERLAPPABLE #-} IfCxt cxt where ifCxt _ t f = f
I don't fully understand it, but this is how I think it works:
It doesn't violate the "open world" assumption any more than
instance {-# OVERLAPPABLE #-} Show a where
show _ = "<<unshowable>>"
does. The approach is actually pretty similar to that: adding a default case to fall back on for all types that do not have an instance in scope. However, it adds some indirection to not make a mess of the existing instances (and to allow different functions to specify different defaults). IfCxt works as a a "meta-class", a class on constraints, that indicates whether those instances exist, with a default case that indicates "false.":
instance {-# OVERLAPPABLE #-} IfCxt cxt where ifCxt _ t f = f
It uses TemplateHaskell to generate a long list of instances for that class:
instance {-# OVERLAPS #-} IfCxt (Show Int) where ifCxt _ t f = t
instance {-# OVERLAPS #-} IfCxt (Show Char) where ifCxt _ t f = t
which also implies that any instances that were not in scope when mkIfCxtInstances was called will be considered non-existing.
The proxy cxt argument is used to pass a Constraint to the function, the (cxt => a) argument (I had no idea RankNTypes allowed that) is an argument that can use the constraint cxt, but as long as that argument is unused, the constraint doesn't need to be solved. This is similar to:
f :: (Show (a -> a) => a) -> a -> a
f _ x = x
The proxy argument supplies the constraint, then the IfCxt constraint is solved to either the t or f argument, if it's t then there is some IfCxt instance where this constraint is supplied which means it can be solved directly, if it's f then the constraint is never demanded so it gets dropped.
This solution is imperfect (as new modules can define new Show instances which won't work unless it also calls mkIfCxtInstances), but being able to do that would violate the open world assumption.
Even if you could do this, it would be a bad design. I would recommend adding a Show constraint to a:
instance Show a => Show (V a) where ...
If you want to store members in a container data type that are not an instance of Show, then you should create a new data type fore them.

Associated Parameter Restriction using Functional Dependency

The function f below, for a given type 'a', takes a parameter of type 'c'. For different types 'a', 'c' is restricted in different ways. Concretely, when 'a' is any Integral type, 'c' should be allowed to be any 'Real' type. When 'a' is Float, 'c' can ONLY be Float.
One attempt is:
{-# LANGUAGE
MultiParamTypeClasses,
FlexibleInstances,
FunctionalDependencies,
UndecidableInstances #-}
class AllowedParamType a c | a -> c
class Foo a where
f :: (AllowedParamType a c) => c -> a
fIntegral :: (Integral a, Real c) => c -> a
fIntegral = error "implementation elided"
instance (Integral i, AllowedParamType i d, Real d) => Foo i where
f = fIntegral
For some reason, GHC 7.4.1 complains that it "could not deduce (Real c) arising from a use of fIntegral". It seems to me that the functional dependency should allow this deduction. In the instance, a is unified with i, so by the functional dependency, d should be unified with c, which in the instance is declared to be 'Real'. What am I missing here?
Functional dependencies aside, will this approach be expressive enough to enforce the restrictions above, or is there a better way? We are only working with a few different values for 'a', so there will be instances like:
instance (Integral i, Real c) => AllowedParamType i c
instance AllowedParamType Float Float
Thanks
A possibly better way, is to use constraint kinds and type families (GHC extensions, requires GHC 7.4, I think). This allows you to specify the constraint as part of the class instance.
{-# LANGUAGE ConstraintKinds, TypeFamilies, FlexibleInstances, UndecidableInstances #-}
import GHC.Exts (Constraint)
class Foo a where
type ParamConstraint a b :: Constraint
f :: ParamConstraint a b => b -> a
instance Integral i => Foo i where
type ParamConstraint i b = Real b
f = fIntegral
EDIT: Upon further experimentation, there are some subtleties that mean that this doesn't work as expected, specifically, type ParamConstraint i b = Real b is too general. I don't know a solution (or if one exists) right now.
OK, this one's been nagging at me. given the wide variety of instances,
let's go the whole hog and get rid of any relationship between the
source and target type other than the presence of an instance:
{-# LANGUAGE OverlappingInstances, FlexibleInstances,TypeSynonymInstances,MultiParamTypeClasses #-}
class Foo a b where f :: a -> b
Now we can match up pairs of types with an f between them however we like, for example:
instance Foo Int Int where f = (+1)
instance Foo Int Integer where f = toInteger.((7::Int) -)
instance Foo Integer Int where f = fromInteger.(^ (2::Integer))
instance Foo Integer Integer where f = (*100)
instance Foo Char Char where f = id
instance Foo Char String where f = (:[]) -- requires TypeSynonymInstances
instance (Foo a b,Functor f) => Foo (f a) (f b) where f = fmap f -- requires FlexibleInstances
instance Foo Float Int where f = round
instance Foo Integer Char where f n = head $ show n
This does mean a lot of explicit type annotation to avoid No instance for... and Ambiguous type error messages.
For example, you can't do main = print (f 6), but you can do main = print (f (6::Int)::Int)
You could list all of the instances with the standard types that you want,
which could lead to an awful lot of repetition, our you could light the blue touchpaper and do:
instance Integral i => Foo Double i where f = round -- requires FlexibleInstances
instance Real r => Foo Integer r where f = fromInteger -- requires FlexibleInstances
Beware: this does not mean "Hey, if you've got an integral type i,
you can have an instance Foo Double i for free using this handy round function",
it means: "every time you have any type i, it's definitely an instance
Foo Double i. By the way, I'm using round for this, so unless your type i is Integral,
we're going to fall out." That's a big issue for the Foo Integer Char instance, for example.
This can easily break your other instances, so if you now type f (5::Integer) :: Integer you get
Overlapping instances for Foo Integer Integer
arising from a use of `f'
Matching instances:
instance Foo Integer Integer
instance Real r => Foo Integer r
You can change your pragmas to include OverlappingInstances:
{-# LANGUAGE OverlappingInstances, FlexibleInstances,TypeSynonymInstances,MultiParamTypeClasses #-}
So now f (5::Integer) :: Integer returns 500, so clearly it's using the more specific Foo Integer Integer instance.
I think this sort of approach might work for you, defining many instances by hand, carefully considering when to go completely wild
making instances out of standard type classes. (Alternatively, there aren't all that many standard types, and as we all know, notMany choose 2 = notIntractablyMany, so you could just list them all.)
Here's a suggestion to solve a more general problem, not yours specifically (I need more detail yet first - I promise to check later). I'm writing it in case other people are searching for a solution to a similar problem to you, I certainly was in the past, before I discovered SO. SO is especially great when it helps you try a radically new approach.
I used to have the work habit:
Introduce a multi-parameter type class (Types hanging out all over the place, so...)
Introduce functional dependencies (Should tidy it up but then I end up needing...)
Add FlexibleInstances (Alarm bells start ringing. There's a reason the compiler has this off by default...)
Add UndecidableInstances (GHC is telling you you're on your own, because it's not convinced it's up to the challenge you're setting it.)
Everything blows up. Refactor somehow.
Then I discovered the joys of type families (functional programming for types (hooray) - multi-parameter type classes are (a bit like) logic programming for types). My workflow changed to:
Introduce a type class including an associated type, i.e. replace
class MyProblematicClass a b | a -> b where
thing :: a -> b
thang :: b -> a -> b
with
class MyJustWorksClass a where
type Thing a :: * -- Thing a is a type (*), not a type constructor (* -> *)
thing :: a -> Thing a
thang :: Thing a -> a -> Thing a
Nervously add FlexibleInstances. Nothing goes wrong at all.
Sometimes fix things by using constraints like (MyJustWorksClass j,j~a)=> instead of (MyJustWorksClass a)=> or (Show t,t ~ Thing a,...)=> instead of (Show (Thing a),...) => to help ghc out. (~ essentially means 'is the same type as')
Nervously add FlexibleContexts. Nothing goes wrong at all.
Everything works.
The reason "Nothing goes wrong at all" is that ghc calculates the type Thing a using my type function Thang rather than trying to deduce it using a merely a bunch of assertions that there's a function there and it ought to be able to work it out.
Give it a go! Read Fun with Type Functions before reading the manual!

Resources