Job cancelled because SparkContext was shut down - apache-spark

While running my spark program in jupyter notebook I got the error "Job cancelled because SparkContext was shut down".I am using spark without hadoop.The same program gave output earlier but now showing error.Any idea why would the error must have occured.
My code is :
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
df = sqlContext.read.json("Musical_Instruments_5.json")
pd=df.select(df['asin'],df['overall'],df['reviewerID'])
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.recommendation import ALS
from pyspark.ml.feature import StringIndexer
from pyspark.ml import Pipeline
from pyspark.sql.functions import col
indexer = [StringIndexer(inputCol=column, outputCol=column+"_index") for
column in list(set(pd.columns)-set(['overall'])) ]
pipeline = Pipeline(stages=indexer)
transformed = pipeline.fit(pd).transform(pd)
transformed.show()
(training,test)=transformed.randomSplit([0.8, 0.2])
als=ALS(maxIter=30,regParam=0.09,rank=25,userCol="reviewerID_index",itemCol="asin_index",ratingCol="overall",coldStartStrategy="drop",nonnegative=True)
model=als.fit(training)
This is the point where it gives error.
Py4JJavaError Traceback (most recent call last)
<ipython-input-14-2e31692d867d> in <module>()
1 #Fit ALS model to training data
----> 2 model=als.fit(training)
C:\spark\spark-2.3.1-bin-hadoop2.7\python\pyspark\ml\base.py in fit(self, dataset, params)
130 return self.copy(params)._fit(dataset)
131 else:
--> 132 return self._fit(dataset)
133 else:
134 raise ValueError("Params must be either a param map or a list/tuple of param maps, "
C:\spark\spark-2.3.1-bin-hadoop2.7\python\pyspark\ml\wrapper.py in _fit(self, dataset)
286
287 def _fit(self, dataset):
--> 288 java_model = self._fit_java(dataset)
289 model = self._create_model(java_model)
290 return self._copyValues(model)
C:\spark\spark-2.3.1-bin-hadoop2.7\python\pyspark\ml\wrapper.py in _fit_java(self, dataset)
283 """
284 self._transfer_params_to_java()
--> 285 return self._java_obj.fit(dataset._jdf)
286
287 def _fit(self, dataset):
C:\spark\spark-2.3.1-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
C:\spark\spark-2.3.1-bin-hadoop2.7\python\pyspark\sql\utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
C:\spark\spark-2.3.1-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o132.fit.
: org.apache.spark.SparkException: Job 11 cancelled because SparkContext was shut down
at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:837)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:835)
at scala.collection.mutable.HashSet.foreach(HashSet.scala:78)
at org.apache.spark.scheduler.DAGScheduler.cleanUpAfterSchedulerStop(DAGScheduler.scala:835)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onStop(DAGScheduler.scala:1841)
at org.apache.spark.util.EventLoop.stop(EventLoop.scala:83)
at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1754)
at org.apache.spark.SparkContext$$anonfun$stop$8.apply$mcV$sp(SparkContext.scala:1931)
at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1360)
at org.apache.spark.SparkContext.stop(SparkContext.scala:1930)
at org.apache.spark.SparkContext$$anonfun$2.apply$mcV$sp(SparkContext.scala:573)
at org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:216)
at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ShutdownHookManager.scala:188)
at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188)
at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:188)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1991)
at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply$mcV$sp(ShutdownHookManager.scala:188)
at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188)
at org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:188)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:188)
at org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:178)
at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:54)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
at org.apache.spark.rdd.RDD.count(RDD.scala:1162)
at org.apache.spark.ml.recommendation.ALS$.train(ALS.scala:1030)
at org.apache.spark.ml.recommendation.ALS.fit(ALS.scala:674)
at org.apache.spark.ml.recommendation.ALS.fit(ALS.scala:568)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)

This problem is solved now.I have to create a checkpoint directory as number of iterations was more than 20 for training.
The code for creating checkpoint directory is:
SparkContext.setCheckpointDir("path to directory")

Related

Issue adding Word2Vec to Spark pipeline

I'm still getting used to Spark but I am having an issue figuring out how to build a pipeline. I have a spark dataframe below and my end goal is to classify each movie by reviewing their plot and classifying them.
dataframe
I am trying to create a pipeline using a stringIndexer, tokenizer, stopwordsremover and word2vec but I am getting the below error. I'm not sure how to resolve it after looking at some similar topics.
indexer = StringIndexer(inputCol="word", outputCol="label")
tokenizer = Tokenizer(inputCol = "plot_synopsis", outputCol = "tokenized_terms")
remover = StopWordsRemover(inputCol="tokenized_terms", outputCol="filtered")
word2Vec = Word2Vec(vectorSize=5, minCount=0, inputCol="filtered", outputCol="wordVectors")
pipeline = Pipeline(stages=[tokenizer, remover, word2Vec, indexer])
encodedData = pipeline.fit(df_expand).transform(df_expand)
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-25-7d237f91c3cf> in <module>
----> 1 encodedData = pipeline.fit(df_expand).transform(df_expand)
~\anaconda3\lib\site-packages\pyspark\ml\base.py in fit(self, dataset, params)
159 return self.copy(params)._fit(dataset)
160 else:
--> 161 return self._fit(dataset)
162 else:
163 raise TypeError("Params must be either a param map or a list/tuple of param maps, "
~\anaconda3\lib\site-packages\pyspark\ml\pipeline.py in _fit(self, dataset)
112 dataset = stage.transform(dataset)
113 else: # must be an Estimator
--> 114 model = stage.fit(dataset)
115 transformers.append(model)
116 if i < indexOfLastEstimator:
~\anaconda3\lib\site-packages\pyspark\ml\base.py in fit(self, dataset, params)
159 return self.copy(params)._fit(dataset)
160 else:
--> 161 return self._fit(dataset)
162 else:
163 raise TypeError("Params must be either a param map or a list/tuple of param maps, "
~\anaconda3\lib\site-packages\pyspark\ml\wrapper.py in _fit(self, dataset)
333
334 def _fit(self, dataset):
--> 335 java_model = self._fit_java(dataset)
336 model = self._create_model(java_model)
337 return self._copyValues(model)
~\anaconda3\lib\site-packages\pyspark\ml\wrapper.py in _fit_java(self, dataset)
330 """
331 self._transfer_params_to_java()
--> 332 return self._java_obj.fit(dataset._jdf)
333
334 def _fit(self, dataset):
~\anaconda3\lib\site-packages\py4j\java_gateway.py in __call__(self, *args)
1319
1320 answer = self.gateway_client.send_command(command)
-> 1321 return_value = get_return_value(
1322 answer, self.gateway_client, self.target_id, self.name)
1323
~\anaconda3\lib\site-packages\pyspark\sql\utils.py in deco(*a, **kw)
109 def deco(*a, **kw):
110 try:
--> 111 return f(*a, **kw)
112 except py4j.protocol.Py4JJavaError as e:
113 converted = convert_exception(e.java_exception)
~\anaconda3\lib\site-packages\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o147.fit.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 18.0 failed 1 times, most recent failure: Lost task 0.0 in stage 18.0 (TID 14) (host.docker.internal executor driver): TaskResultLost (result lost from block manager)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2454)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2403)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2402)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2402)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1160)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1160)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1160)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2642)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2584)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2573)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:938)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2214)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2235)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2254)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2279)
at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1030)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
at org.apache.spark.rdd.RDD.collect(RDD.scala:1029)
at org.apache.spark.mllib.feature.Word2Vec.learnVocab(Word2Vec.scala:191)
at org.apache.spark.mllib.feature.Word2Vec.fit(Word2Vec.scala:312)
at org.apache.spark.ml.feature.Word2Vec.fit(Word2Vec.scala:182)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Unknown Source)
can you check once and make sure you are passing Datafrmae to fit() method.
Related issue:
PySpark :: FP-growth algorithm ( raise ValueError("Params must be either a param map or a list/tuple of param maps, ")

How to set azure jars for pyspark to be able to read Blob Storage from jupyter?

I am building an application for studying purposes. In this application, I have two docker containers mouted:
azurite (which emulates a Azure Storage container) - mcr.microsoft.com/azure-storage/azurite
a jupyter notebook with pyspark - jupyter/pyspark-notebook
They are already in the same network and the comunication between them is not a problem.
My main problem is that I am trying to make pyspark to read files from Azure Storage with spark.read.json(...) but I can't beacause I`m not getting how to config pyspark jar files.
Below, my try:
spark = SparkSession.builder \
.appName('test') \
.config(
'spark.driver.extraClassPath',
'/home/jovyan/work/normalization/.jars/hadoop-azure-3.3.2.jar, /home/jovyan/work/normalization/.jars/azure-storage-8.6.6.jar') \
.config(
'fs.azure',
'org.apache.hadoop.fs.azure.NativeAzureFileSystem') \
.config(
'fs.azure.account.key.devstoreaccount1.blob.core.windows.net',
'Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw=='
) \
.getOrCreate()
df = spark.read.json('wasbs://container#devstoreaccount1.blob.core.windows.net/path/to/file.json')
When I try to read the file, I get the following error:
Py4JJavaError Traceback (most recent call last)
Input In [3], in <cell line: 1>()
----> 1 df = spark.read.json('wasbs://bronze#devstoreaccount1.blob.core.windows.net/pokemon_tcg/cards/2022/05/01/*.json')
File /usr/local/spark/python/pyspark/sql/readwriter.py:229, in DataFrameReader.json(self, path, schema, primitivesAsString, prefersDecimal, allowComments, allowUnquotedFieldNames, allowSingleQuotes, allowNumericLeadingZero, allowBackslashEscapingAnyCharacter, mode, columnNameOfCorruptRecord, dateFormat, timestampFormat, multiLine, allowUnquotedControlChars, lineSep, samplingRatio, dropFieldIfAllNull, encoding, locale, pathGlobFilter, recursiveFileLookup, allowNonNumericNumbers, modifiedBefore, modifiedAfter)
227 path = [path]
228 if type(path) == list:
--> 229 return self._df(self._jreader.json(self._spark._sc._jvm.PythonUtils.toSeq(path)))
230 elif isinstance(path, RDD):
231 def func(iterator):
File /usr/local/spark/python/lib/py4j-0.10.9.3-src.zip/py4j/java_gateway.py:1321, in JavaMember.__call__(self, *args)
1315 command = proto.CALL_COMMAND_NAME +\
1316 self.command_header +\
1317 args_command +\
1318 proto.END_COMMAND_PART
1320 answer = self.gateway_client.send_command(command)
-> 1321 return_value = get_return_value(
1322 answer, self.gateway_client, self.target_id, self.name)
1324 for temp_arg in temp_args:
1325 temp_arg._detach()
File /usr/local/spark/python/pyspark/sql/utils.py:111, in capture_sql_exception.<locals>.deco(*a, **kw)
109 def deco(*a, **kw):
110 try:
--> 111 return f(*a, **kw)
112 except py4j.protocol.Py4JJavaError as e:
113 converted = convert_exception(e.java_exception)
File /usr/local/spark/python/lib/py4j-0.10.9.3-src.zip/py4j/protocol.py:326, in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
331 "An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
332 format(target_id, ".", name, value))
Py4JJavaError: An error occurred while calling o40.json.
: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.azure.NativeAzureFileSystem$Secure not found
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2667)
at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:3431)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:3466)
at org.apache.hadoop.fs.FileSystem.access$300(FileSystem.java:174)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:3574)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:3521)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:540)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:365)
at org.apache.spark.sql.execution.datasources.DataSource$.$anonfun$checkAndGlobPathIfNecessary$1(DataSource.scala:747)
at scala.collection.immutable.List.map(List.scala:293)
at org.apache.spark.sql.execution.datasources.DataSource$.checkAndGlobPathIfNecessary(DataSource.scala:745)
at org.apache.spark.sql.execution.datasources.DataSource.checkAndGlobPathIfNecessary(DataSource.scala:577)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:408)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:274)
at org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:245)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:245)
at org.apache.spark.sql.DataFrameReader.json(DataFrameReader.scala:405)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:566)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.base/java.lang.Thread.run(Thread.java:829)
Caused by: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.azure.NativeAzureFileSystem$Secure not found
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2571)
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2665)
... 29 more
What am I doing wrong???

Py4JJavaError- NotClassFound error while using GeoSpark

I am using GeoSpark (Apache Sedona) library to read geospatial data from .csv file. I want to read polygon from this csv file, but getting the below error:
: java.lang.NoClassDefFoundError: org/apache/spark/sql/catalyst/expressions/codegen/CodegenFallback$class
Here is the code:
from geospark.register import upload_jars
from geospark.register import GeoSparkRegistrator
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local") \
.config("spark.jars.packages","org.datasyslab:geospark:1.3.1,org.datasyslab:geospark-sql_2.3:1.3.1") \
.getOrCreate()
GeoSparkRegistrator.registerAll(spark)
df = spark.read.csv(path="D:\\Arshad\\data\\test.csv",
header=True)
df.createOrReplaceTempView("geotbl")
df2 = spark.sql("select country, st_geomFromWKT(polygon) as geometry from geotbl")
I am getting below error:
Py4JJavaError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_12340/2742464755.py in <module>
----> 1 df2 = spark.sql("select country, st_geomFromWKT(polygon) as geometry from geotbl")
c:\users\arshad\appdata\local\programs\python\python37\lib\site-packages\pyspark\sql\session.py in sql(self, sqlQuery)
647 [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')]
648 """
--> 649 return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped)
650
651 #since(2.0)
c:\users\arshad\appdata\local\programs\python\python37\lib\site-packages\py4j\java_gateway.py in __call__(self, *args)
1303 answer = self.gateway_client.send_command(command)
1304 return_value = get_return_value(
-> 1305 answer, self.gateway_client, self.target_id, self.name)
1306
1307 for temp_arg in temp_args:
c:\users\arshad\appdata\local\programs\python\python37\lib\site-packages\pyspark\sql\utils.py in deco(*a, **kw)
126 def deco(*a, **kw):
127 try:
--> 128 return f(*a, **kw)
129 except py4j.protocol.Py4JJavaError as e:
130 converted = convert_exception(e.java_exception)
c:\users\arshad\appdata\local\programs\python\python37\lib\site-packages\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o27.sql.
: java.lang.NoClassDefFoundError: org/apache/spark/sql/catalyst/expressions/codegen/CodegenFallback$class
at org.apache.spark.sql.geosparksql.expressions.ST_GeomFromWKT.<init>(Constructors.scala:118)
at org.apache.spark.sql.geosparksql.expressions.ST_GeomFromWKT$.apply(Constructors.scala:117)
at org.apache.spark.sql.geosparksql.expressions.ST_GeomFromWKT$.apply(Constructors.scala:117)
at org.apache.spark.sql.catalyst.analysis.SimpleFunctionRegistry.lookupFunction(FunctionRegistry.scala:121)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.lookupFunction(SessionCatalog.scala:1439)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$$anonfun$apply$16$$anonfun$applyOrElse$103.$anonfun$applyOrElse$106(Analyzer.scala:1852)
at org.apache.spark.sql.catalyst.analysis.package$.withPosition(package.scala:53)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$$anonfun$apply$16$$anonfun$applyOrElse$103.applyOrElse(Analyzer.scala:1852)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$$anonfun$apply$16$$anonfun$applyOrElse$103.applyOrElse(Analyzer.scala:1835)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDown$1(TreeNode.scala:315)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:73)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:315)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDown$3(TreeNode.scala:320)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$1(TreeNode.scala:405)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:243)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:403)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:356)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:320)
at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$transformExpressionsDown$1(QueryPlan.scala:98)
at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$1(QueryPlan.scala:120)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:73)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:120)
at org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:131)
at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$3(QueryPlan.scala:136)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238)
at scala.collection.immutable.List.foreach(List.scala:392)
at scala.collection.TraversableLike.map(TraversableLike.scala:238)
at scala.collection.TraversableLike.map$(TraversableLike.scala:231)
at scala.collection.immutable.List.map(List.scala:298)
at org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:136)
at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$4(QueryPlan.scala:141)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:243)
at org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:141)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:98)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:89)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$$anonfun$apply$16.applyOrElse(Analyzer.scala:1835)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$$anonfun$apply$16.applyOrElse(Analyzer.scala:1833)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$3(AnalysisHelper.scala:90)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:73)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUp$1(AnalysisHelper.scala:90)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:212)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUp$(AnalysisHelper.scala:84)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$.apply(Analyzer.scala:1833)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$.apply(Analyzer.scala:1831)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:149)
at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126)
at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122)
at scala.collection.immutable.List.foldLeft(List.scala:89)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:146)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:138)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:138)
at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:171)
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:165)
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:130)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:116)
at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:116)
at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:149)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:219)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:148)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:68)
at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:138)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:138)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:68)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:66)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:58)
at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:99)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97)
at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:607)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:602)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)

Microsoft Azure spark kusto connector -- Is it possible to get files of azure storage out of databricks?

I'm trying to read and write files at azure storage, my attempts until now:
Creating the Spark Session:
import pyspark
from pyspark.sql import SparkSession
from pyspark.sql import SQLContext
sparkOptions = {"executor_memory" : "1G","driver_memory": "1G", "max_results_size": "1G"}
conf = pyspark.SparkConf().setAppName(app)
conf = (conf.setMaster("local[*]")
.set('spark.executor.memory', sparkOptions["executor_memory"])\
.set('spark.driver.memory', sparkOptions["driver_memory"])\
.set('spark.driver.maxResultSize', sparkOptions["max_results_size"])\
.set('spark.sql.crossJoin.enabled', "true")\
.set('spark.jars.packages', 'com.microsoft.azure.kusto:spark-kusto-connector:1.0.0')\
.set("fs.azure", "org.apache.hadoop.fs.azure.NativeAzureFileSystem")\
.set("fs.azure.account.auth.type", "OAuth")\
.set("fs.azure.account.oauth.provider.type", "org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider")\
.set("fs.azure.account.oauth2.client.id", id)\
.set("fs.azure.account.oauth2.client.secret", secret)\
.set("fs.azure.account.oauth2.client.endpoint", endpoint)\
.set("fs.azure.createRemoteFileSystemDuringInitialization", "true")
)
sparkContext = pyspark.SparkContext(conf=conf)
sparkSession = SparkSession(sparkContext)
sqlContext = SQLContext(sparkContext)
Trying to read a CSV in azure storage:
df = sparkSession.read.option("header", "true").csv("wasbs://container#account.blob.core.windows.net/archive.csv")
df.show()
Error:
Py4JJavaError Traceback (most recent call last)
<ipython-input-3-975f978e0f66> in <module>()
----> 1 df = sparkSession.read.option("header", "true").csv("wasbs://container#account.blob.core.windows.net/archive.csv")
2 df.show()
~/anaconda3/lib/python3.6/site-packages/pyspark/sql/readwriter.py in csv(self, path, schema, sep, encoding, quote, escape, comment, header, inferSchema, ignoreLeadingWhiteSpace, ignoreTrailingWhiteSpace, nullValue, nanValue, positiveInf, negativeInf, dateFormat, timestampFormat, maxColumns, maxCharsPerColumn, maxMalformedLogPerPartition, mode, columnNameOfCorruptRecord, multiLine, charToEscapeQuoteEscaping, samplingRatio, enforceSchema, emptyValue)
474 path = [path]
475 if type(path) == list:
--> 476 return self._df(self._jreader.csv(self._spark._sc._jvm.PythonUtils.toSeq(path)))
477 elif isinstance(path, RDD):
478 def func(iterator):
~/anaconda3/lib/python3.6/site-packages/py4j/java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
~/anaconda3/lib/python3.6/site-packages/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
~/anaconda3/lib/python3.6/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o68.csv.
: java.io.IOException: No FileSystem for scheme: wasbs
at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2660)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2667)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:547)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:545)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.List.foreach(List.scala:392)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at scala.collection.immutable.List.flatMap(List.scala:355)
at org.apache.spark.sql.execution.datasources.DataSource.org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary(DataSource.scala:545)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:359)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:618)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:566)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.base/java.lang.Thread.run(Thread.java:834)
Trying with abfss:
df = sparkSession.read.option("header", "true").csv("abfss://container#account.blob.core.windows.net/archive.csv")
df.show()
Error:
y4JJavaError Traceback (most recent call last)
<ipython-input-4-02abec06890e> in <module>()
----> 1 df = sparkSession.read.option("header", "true").csv("abfss://container#account.blob.core.windows.net/archive.csv")
2 df.show()
~/anaconda3/lib/python3.6/site-packages/pyspark/sql/readwriter.py in csv(self, path, schema, sep, encoding, quote, escape, comment, header, inferSchema, ignoreLeadingWhiteSpace, ignoreTrailingWhiteSpace, nullValue, nanValue, positiveInf, negativeInf, dateFormat, timestampFormat, maxColumns, maxCharsPerColumn, maxMalformedLogPerPartition, mode, columnNameOfCorruptRecord, multiLine, charToEscapeQuoteEscaping, samplingRatio, enforceSchema, emptyValue)
474 path = [path]
475 if type(path) == list:
--> 476 return self._df(self._jreader.csv(self._spark._sc._jvm.PythonUtils.toSeq(path)))
477 elif isinstance(path, RDD):
478 def func(iterator):
~/anaconda3/lib/python3.6/site-packages/py4j/java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
~/anaconda3/lib/python3.6/site-packages/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
~/anaconda3/lib/python3.6/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o104.csv.
: java.io.IOException: No FileSystem for scheme: abfss
at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2660)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2667)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:547)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:545)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.List.foreach(List.scala:392)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at scala.collection.immutable.List.flatMap(List.scala:355)
at org.apache.spark.sql.execution.datasources.DataSource.org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary(DataSource.scala:545)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:359)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:618)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:566)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.base/java.lang.Thread.run(Thread.java:834)
Searching for examples of utilization of the kusto-spark connector I've only found examples in databricks, utilizing dbutils, I wanna know if it's possible to use the connector out of databricks and what I'm doing wrong in my code, Thank you.
It's not really about kusto
Are you using Azure databricks? If so simply refer their docs.
If not try importing
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-azure</artifactId>
<version>2.7.0</version>
</dependency>
If it doesn't help - download the connector code from GitHub and change this dependency
to 2.7 (the connector uses 3.2)
Btw, don't know if you did or didn't but you have to set key or sas to this container via the spark conf

Error while running PageRank and BFS functions on Graphframes in PySpark

I'm new to Spark, and am learning it on the Cloudera Distr for Hadoop (CDH). I'm trying to execute the PageRank and BFS functions through Jupyter Notebook, which was initiated using the following command:
pyspark --packages graphframes:graphframes:0.1.0-spark1.6,com.databricks:spark-csv_2.11:1.2.0
The below is the PageRank function command I tried to run, along with the error message:
ranks = tripGraph.pageRank(resetProbability=0.15, maxIter=5)
Output:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-20-34d549cc033e> in <module>()
----> 1 ranks = tripGraph.pageRank(resetProbability=0.15, maxIter=5)
2 ranks.vertices.orderBy(ranks.vertices.pagerank.desc()).limit(20).show()
/tmp/spark-3bdc323d-a439-4f0a-ac1d-4e64ef4d1396/userFiles-0c248c5c-29fc-44c7-bfd9-3543500350dc/graphframes_graphframes-0.1.0-spark1.6.jar/graphframes/graphframe.pyc in pageRank(self, resetProbability, sourceId, maxIter, tol)
/usr/lib/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
811 answer = self.gateway_client.send_command(command)
812 return_value = get_return_value(
--> 813 answer, self.gateway_client, self.target_id, self.name)
814
815 for temp_arg in temp_args:
/usr/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
43 def deco(*a, **kw):
44 try:
---> 45 return f(*a, **kw)
46 except py4j.protocol.Py4JJavaError as e:
47 s = e.java_exception.toString()
/usr/lib/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
306 raise Py4JJavaError(
307 "An error occurred while calling {0}{1}{2}.\n".
--> 308 format(target_id, ".", name), value)
309 else:
310 raise Py4JError(
Py4JJavaError: An error occurred while calling o106.run.
: java.lang.AbstractMethodError
at org.apache.spark.Logging$class.log(Logging.scala:50)
at org.apache.spark.graphx.lib.backport.PageRank$.log(PageRank.scala:65)
at org.apache.spark.Logging$class.logInfo(Logging.scala:58)
at org.apache.spark.graphx.lib.backport.PageRank$.logInfo(PageRank.scala:65)
at org.apache.spark.graphx.lib.backport.PageRank$.runWithOptions(PageRank.scala:148)
at org.graphframes.lib.PageRank$.run(PageRank.scala:130)
at org.graphframes.lib.PageRank.run(PageRank.scala:104)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
I'm getting the same error messages for the BFS function I'm trying:
filteredPaths = tripGraph.bfs(
fromExpr = "id = 'SEA'",
toExpr = "id = 'SFO'",
maxPathLength = 1)
Output:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-22-74394b11f50d> in <module>()
4 fromExpr = "id = 'SEA'",
5 toExpr = "id = 'SFO'",
----> 6 maxPathLength = 1)
7
8 filteredPaths.show()
/tmp/spark-3bdc323d-a439-4f0a-ac1d-4e64ef4d1396/userFiles-0c248c5c-29fc-44c7-bfd9-3543500350dc/graphframes_graphframes-0.1.0-spark1.6.jar/graphframes/graphframe.pyc in bfs(self, fromExpr, toExpr, edgeFilter, maxPathLength)
/usr/lib/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
811 answer = self.gateway_client.send_command(command)
812 return_value = get_return_value(
--> 813 answer, self.gateway_client, self.target_id, self.name)
814
815 for temp_arg in temp_args:
/usr/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
43 def deco(*a, **kw):
44 try:
---> 45 return f(*a, **kw)
46 except py4j.protocol.Py4JJavaError as e:
47 s = e.java_exception.toString()
/usr/lib/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
306 raise Py4JJavaError(
307 "An error occurred while calling {0}{1}{2}.\n".
--> 308 format(target_id, ".", name), value)
309 else:
310 raise Py4JError(
Py4JJavaError: An error occurred while calling o147.run.
: java.lang.AbstractMethodError
at org.apache.spark.Logging$class.log(Logging.scala:50)
at org.graphframes.lib.BFS$.log(BFS.scala:131)
at org.apache.spark.Logging$class.logInfo(Logging.scala:58)
at org.graphframes.lib.BFS$.logInfo(BFS.scala:131)
at org.graphframes.lib.BFS$.org$graphframes$lib$BFS$$run(BFS.scala:212)
at org.graphframes.lib.BFS.run(BFS.scala:126)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
Can you please let me know the issue?
Thanks, Sasi.
You are using incompatible Scala versions:
graphframes:graphframes:0.1.0-spark1.6 - Scala 2.10
com.databricks:spark-csv_2.11:1.2.0 - Scala 2.11
Spark installation - Probably Scala 2.10.
You have to use the same Scala version for all components (com.databricks:spark-csv_2.10:1.2.0 if Spark is compiled with Scala 2.10). Please consult Resolving dependency problems in Apache Spark for details.

Resources