node.js module export how to use data amoung all modules? - node.js

I would like to use updated (and only then) globals among all node modules. How to do that? Questions are in code.
app.js
var data = 'data';
var global = require('glob.js')(data);
// here we are require your globals variables and we corectly 'set them'
console.log(globals.glob1);
// we can use them here
glob.js
module.exports = function(data)
{
var globs = {
glob1 : data.toLowerCase(),
glob2 : data.toUpperCase()
}
return globs;
}
mod.js
var global = require('glob.js'); // I require globals but they are not set...
function funct(someOtherData, someMoreData)
{
var test = global.glob1;
console.log(test);
// why I can't use globals here ? How can I use corectly set globals (globals need to be updated first - app.js, then ALL other modules should be able to use correctly set globals)?
}
module.export = funct;

For the answer scroll down to the TLDR section below but do read on to understand why.
Part1 - the difference between a function and a function call
Your first mistake is that you are exporting a function, not an object:
module.exports = function(data) // <---- this is a function
{
var globs = {
glob1 : data.toLowerCase(),
glob2 : data.toUpperCase()
}
return globs;
}
and in app.js you do this:
console.log(globs.glob1); <--- globs is a function, not an object
when you should be doing this:
console.log(globs().glob1);
Why is this? OK, lets forget for a moment your module. Consider the following code:
var a = function(){ return 2 };
console.log(a); // do you expect this to print a function or 2?
console.log(a()); // what do you expect this to print?
This is a very basic rule about functions in all programming languages, not just javascript: to get the return value you need to call the function. So in your code:
function myExportedFunction (data) {
// some logic here...
return globs;
}
console.log(myExportedFunction); // prints a function
console.log(myExportedFunction()); // prints the globs object
console.log(myExportedFunction().glob1); // prints value of glob1
So it's simple really. There is no magic syntax going on. You've just forgotten to return the glob object and are using the function pointer instead. Obviously the function has no glob1 property so it's correct for it to be undefined.
Part2 - function local variables
OK. So let's say you made the changes I recommended above. There's an obvious problem with the way the function was written. What happens when you do this:
var glob = require('glob.js')();
console.log(glob.glob1); // <--- prints "undefined"
So the first problem is you're not checking if you're passing data or nothing. So every time you call the function you will overwrite the stored value.
There's another problem, you are always returning a different object every time you call the function. Let's look at how local variables work when returned:
function a () {
var data = {}
return data;
}
var x = a();
var y = a();
x.testing = 1;
y.testing = 2;
console.log(x.testing); // prints 1
console.log(y.testing); // prints 2
So, every time you call a function that creates a local variable you are returning a different object. Actually what's doing this is not really the variable but the object literal syntax:
var a = {};
// is basically the same as
var a = new Object();
If we change the above example to:
function a () {
return {};
}
it would still behave the same.
TLDR
So, how do we fix it? Simple, create the object outside of the function and check if we pass data to initialize:
var globs = {
glob1 : "",
glob2 : ""
}
module.exports = function(data)
{
globs.glob1 = data.toLowerCase();
globs.glob2 = data.toUpperCase();
return globs;
}
Now everything should work:
In app.js
var global = require('glob.js')(data);
In mod.js
var global = require('glob.js')();
Epologue - modules are singletons
It may or may not be obvious to you why the above should work. In case you already know why I'm writing this as reference to future readers.
In node.js modules are implemented as proper singletons. Therefore in node if you want a singleton all you need to do is write a module, you don't need to implement any special code for it.
What this means is that all module globals (module scoped variables) are shared amongst all requires. Here's a very simple module to share one variable amongst all modules:
shared.js
var x = "";
module.exports = {
set: function (val) {x=val},
get: function () {return x}
}
a.js
var shared = require('./shared');
shared.set("hello world");
b.js
var shared = require('./shared');
console.log(shared.get()); // prints "hello world"
We're using this feature to declare a shared glob variable in the code above.

You can use the global. variable identifier to set global variables in NodeJS, instead of var, example:
app.js
var data = 'data';
var glob = require('./glob.js');
glob(data);
// here we are require your globals variables and we corectly 'set them'
console.log(global.gl.glob1);
var mod = require('./mod.js');
mod();
// we can use them here
glob.js
module.exports = function(data)
{
console.log("setting globals");
global.gl = {
glob1 : '1' + data,
glob2 : '2' + data
}
// return global.gl; // can be removed
}
mod.js
function funct(someOtherData, someMoreData)
{
var test = global.gl.glob1;
console.log(test);
test = global.gl.glob2;
console.log(test);
// why I can't use globals here ? How can I use corectly set globals (globals need to be updated first - app.js, then ALL other modules should be able to use correctly set globals)?
}
module.exports = funct;
As you can see in glob.js, i switched to var globs = to global.gl = and then in mod.js used it as global.gl.
Running app.js outputs:
setting globals
1data // From app.js
1data // From mod.js imported in app.js
2data // From mod.js imported in app.js

There are 2 options:
Use nodejs global variable (not recommended)
Create shared module
You chose 2nd option, but did it a bit wrong way by exporting a function. When you import the package and call the function it always creates new globs object and fulfill it with your data. Instead you can export an object. Simple example
glob.js
Global object is defined here
module.exports = {
glob1: '1',
glob2: '2'
};
mod.js
You can change global object here, like
var globs = require('./glob');
module.exports.updateGlob1 = function(data) {
globs.glob1 = data;
};
app.js
Here if you access global variable you can see it updated
var globs = require('./glob');
var mod = require('./mod');
mod.updateGlob1('1 plus 2');
console.log(globs.glob1); // Output: '1 plus 2'
There can be more complex examples, as for module design pattern often IIFE is used.
UPDATE
Another example using IIFE.
glob.js
module.exports = (function() {
var glob1 = 'initial value';
return {
// Getter method
getGlob1() {
return glob1;
},
// Setter method
setGlob1(value) {
glob1 = value;
}
}
})();
mod.js
var shared = require('./shared');
module.exports.testFn = function() {
// Access global variable with getter method
console.log('In mod.js', shared.getGlob1());
};
app.js
var shared = require('./shared');
var mod = require('./mod');
// Print initial value
console.log('Initial', shared.getGlob1());
// Set new value to global variable
shared.setGlob1('new value');
// Print updated value
console.log('In app.js', shared.getGlob1());
// Use global variable in mod.js file
mod.testFn();

Related

When exporting a module like this, what happens?

I was looking up some database connection Google searches when I saw something that exported an instance of a module as such
const foo = () => {
// Do stuff
};
...
module.exports = foo();
I don't know what this is called but how does nodejs treat exporting a function invocation vs an object or the function itself (without calling it)?
Thank you
The foo function only gets called once no matter how many times you require the module.
This is very simplified explanation of what is happening behind the scenes in Node.js
// cache for modules
var modules = {};
// very simplified require function
function require(name) {
// check cache
if (modules[name])
// so if it has already been required it returns the cached result
return modules[name].module.exports;
// it will resolve path to the required module
// and loads the file content
// not showing here
var obj = { module: { exports: {}}};
// node will wrap the code in a function similar to bellow
function module(module, exports){
const foo = () => {
// Do stuff
};
...
module.exports = foo();
};
module(obj.module, obj.module.exports);
// and now cache it
modules[name] = obj;
return obj.module.exports;
}

NodeJS/Express share function between multiple routes files [duplicate]

Let's say I have a file called app.js. Pretty simple:
var express = require('express');
var app = express.createServer();
app.set('views', __dirname + '/views');
app.set('view engine', 'ejs');
app.get('/', function(req, res){
res.render('index', {locals: {
title: 'NowJS + Express Example'
}});
});
app.listen(8080);
What if I have a functions inside "tools.js". How would I import them to use in apps.js?
Or...am I supposed to turn "tools" into a module, and then require it? << seems hard, I rather do the basic import of the tools.js file.
You can require any js file, you just need to declare what you want to expose.
// tools.js
// ========
module.exports = {
foo: function () {
// whatever
},
bar: function () {
// whatever
}
};
var zemba = function () {
}
And in your app file:
// app.js
// ======
var tools = require('./tools');
console.log(typeof tools.foo); // => 'function'
console.log(typeof tools.bar); // => 'function'
console.log(typeof tools.zemba); // => undefined
If, despite all the other answers, you still want to traditionally include a file in a node.js source file, you can use this:
var fs = require('fs');
// file is included here:
eval(fs.readFileSync('tools.js')+'');
The empty string concatenation +'' is necessary to get the file content as a string and not an object (you can also use .toString() if you prefer).
The eval() can't be used inside a function and must be called inside the global scope otherwise no functions or variables will be accessible (i.e. you can't create a include() utility function or something like that).
Please note that in most cases this is bad practice and you should instead write a module. However, there are rare situations, where pollution of your local context/namespace is what you really want.
Update 2015-08-06
Please also note this won't work with "use strict"; (when you are in "strict mode") because functions and variables defined in the "imported" file can't be accessed by the code that does the import. Strict mode enforces some rules defined by newer versions of the language standard. This may be another reason to avoid the solution described here.
You need no new functions nor new modules.
You simply need to execute the module you're calling if you don't want to use namespace.
in tools.js
module.exports = function() {
this.sum = function(a,b) { return a+b };
this.multiply = function(a,b) { return a*b };
//etc
}
in app.js
or in any other .js like myController.js :
instead of
var tools = require('tools.js') which force us to use a namespace and call tools like tools.sum(1,2);
we can simply call
require('tools.js')();
and then
sum(1,2);
in my case I have a file with controllers ctrls.js
module.exports = function() {
this.Categories = require('categories.js');
}
and I can use Categories in every context as public class after require('ctrls.js')()
Create two js files
// File cal.js
module.exports = {
sum: function(a,b) {
return a+b
},
multiply: function(a,b) {
return a*b
}
};
Main js file
// File app.js
var tools = require("./cal.js");
var value = tools.sum(10,20);
console.log("Value: "+value);
Console Output
Value: 30
create two files e.g app.js and tools.js
app.js
const tools= require("./tools.js")
var x = tools.add(4,2) ;
var y = tools.subtract(4,2);
console.log(x);
console.log(y);
tools.js
const add = function(x, y){
return x+y;
}
const subtract = function(x, y){
return x-y;
}
module.exports ={
add,subtract
}
output
6
2
Here is a plain and simple explanation:
Server.js content:
// Include the public functions from 'helpers.js'
var helpers = require('./helpers');
// Let's assume this is the data which comes from the database or somewhere else
var databaseName = 'Walter';
var databaseSurname = 'Heisenberg';
// Use the function from 'helpers.js' in the main file, which is server.js
var fullname = helpers.concatenateNames(databaseName, databaseSurname);
Helpers.js content:
// 'module.exports' is a node.JS specific feature, it does not work with regular JavaScript
module.exports =
{
// This is the function which will be called in the main file, which is server.js
// The parameters 'name' and 'surname' will be provided inside the function
// when the function is called in the main file.
// Example: concatenameNames('John,'Doe');
concatenateNames: function (name, surname)
{
var wholeName = name + " " + surname;
return wholeName;
},
sampleFunctionTwo: function ()
{
}
};
// Private variables and functions which will not be accessible outside this file
var privateFunction = function ()
{
};
I was also looking for a NodeJS 'include' function and I checked the solution proposed by Udo G - see message https://stackoverflow.com/a/8744519/2979590. His code doesn't work with my included JS files.
Finally I solved the problem like that:
var fs = require("fs");
function read(f) {
return fs.readFileSync(f).toString();
}
function include(f) {
eval.apply(global, [read(f)]);
}
include('somefile_with_some_declarations.js');
Sure, that helps.
Create two JavaScript files. E.g. import_functions.js and main.js
1.) import_functions.js
// Declaration --------------------------------------
module.exports =
{
add,
subtract
// ...
}
// Implementation ----------------------------------
function add(x, y)
{
return x + y;
}
function subtract(x, y)
{
return x - y;
}
// ...
2.) main.js
// include ---------------------------------------
const sf= require("./import_functions.js")
// use -------------------------------------------
var x = sf.add(4,2);
console.log(x);
var y = sf.subtract(4,2);
console.log(y);
output
6
2
The vm module in Node.js provides the ability to execute JavaScript code within the current context (including global object). See http://nodejs.org/docs/latest/api/vm.html#vm_vm_runinthiscontext_code_filename
Note that, as of today, there's a bug in the vm module that prevenst runInThisContext from doing the right when invoked from a new context. This only matters if your main program executes code within a new context and then that code calls runInThisContext. See https://github.com/joyent/node/issues/898
Sadly, the with(global) approach that Fernando suggested doesn't work for named functions like "function foo() {}"
In short, here's an include() function that works for me:
function include(path) {
var code = fs.readFileSync(path, 'utf-8');
vm.runInThisContext(code, path);
}
say we wants to call function ping() and add(30,20) which is in lib.js file
from main.js
main.js
lib = require("./lib.js")
output = lib.ping();
console.log(output);
//Passing Parameters
console.log("Sum of A and B = " + lib.add(20,30))
lib.js
this.ping=function ()
{
return "Ping Success"
}
//Functions with parameters
this.add=function(a,b)
{
return a+b
}
Udo G. said:
The eval() can't be used inside a function and must be called inside
the global scope otherwise no functions or variables will be
accessible (i.e. you can't create a include() utility function or
something like that).
He's right, but there's a way to affect the global scope from a function. Improving his example:
function include(file_) {
with (global) {
eval(fs.readFileSync(file_) + '');
};
};
include('somefile_with_some_declarations.js');
// the declarations are now accessible here.
Hope, that helps.
app.js
let { func_name } = require('path_to_tools.js');
func_name(); //function calling
tools.js
let func_name = function() {
...
//function body
...
};
module.exports = { func_name };
It worked with me like the following....
Lib1.js
//Any other private code here
// Code you want to export
exports.function1 = function(params) {.......};
exports.function2 = function(params) {.......};
// Again any private code
now in the Main.js file you need to include Lib1.js
var mylib = requires('lib1.js');
mylib.function1(params);
mylib.function2(params);
Please remember to put the Lib1.js in node_modules folder.
Another way to do this in my opinion, is to execute everything in the lib file when you call require() function using (function(/* things here */){})(); doing this will make all these functions global scope, exactly like the eval() solution
src/lib.js
(function () {
funcOne = function() {
console.log('mlt funcOne here');
}
funcThree = function(firstName) {
console.log(firstName, 'calls funcThree here');
}
name = "Mulatinho";
myobject = {
title: 'Node.JS is cool',
funcFour: function() {
return console.log('internal funcFour() called here');
}
}
})();
And then in your main code you can call your functions by name like:
main.js
require('./src/lib')
funcOne();
funcThree('Alex');
console.log(name);
console.log(myobject);
console.log(myobject.funcFour());
Will make this output
bash-3.2$ node -v
v7.2.1
bash-3.2$ node main.js
mlt funcOne here
Alex calls funcThree here
Mulatinho
{ title: 'Node.JS is cool', funcFour: [Function: funcFour] }
internal funcFour() called here
undefined
Pay atention to the undefined when you call my object.funcFour(), it will be the same if you load with eval(). Hope it helps :)
You can put your functions in global variables, but it's better practice to just turn your tools script into a module. It's really not too hard – just attach your public API to the exports object. Take a look at Understanding Node.js' exports module for some more detail.
I just want to add, in case you need just certain functions imported from your tools.js, then you can use a destructuring assignment which is supported in node.js since version 6.4 - see node.green.
Example:
(both files are in the same folder)
tools.js
module.exports = {
sum: function(a,b) {
return a + b;
},
isEven: function(a) {
return a % 2 == 0;
}
};
main.js
const { isEven } = require('./tools.js');
console.log(isEven(10));
output: true
This also avoids that you assign those functions as properties of another object as its the case in the following (common) assignment:
const tools = require('./tools.js');
where you need to call tools.isEven(10).
NOTE:
Don't forget to prefix your file name with the correct path - even if both files are in the same folder, you need to prefix with ./
From Node.js docs:
Without a leading '/', './', or '../' to indicate a file, the module
must either be a core module or is loaded from a node_modules folder.
Include file and run it in given (non-global) context
fileToInclude.js
define({
"data": "XYZ"
});
main.js
var fs = require("fs");
var vm = require("vm");
function include(path, context) {
var code = fs.readFileSync(path, 'utf-8');
vm.runInContext(code, vm.createContext(context));
}
// Include file
var customContext = {
"define": function (data) {
console.log(data);
}
};
include('./fileToInclude.js', customContext);
Using the ESM module system:
a.js:
export default function foo() {};
export function bar() {};
b.js:
import foo, {bar} from './a.js';
This is the best way i have created so far.
var fs = require('fs'),
includedFiles_ = {};
global.include = function (fileName) {
var sys = require('sys');
sys.puts('Loading file: ' + fileName);
var ev = require(fileName);
for (var prop in ev) {
global[prop] = ev[prop];
}
includedFiles_[fileName] = true;
};
global.includeOnce = function (fileName) {
if (!includedFiles_[fileName]) {
include(fileName);
}
};
global.includeFolderOnce = function (folder) {
var file, fileName,
sys = require('sys'),
files = fs.readdirSync(folder);
var getFileName = function(str) {
var splited = str.split('.');
splited.pop();
return splited.join('.');
},
getExtension = function(str) {
var splited = str.split('.');
return splited[splited.length - 1];
};
for (var i = 0; i < files.length; i++) {
file = files[i];
if (getExtension(file) === 'js') {
fileName = getFileName(file);
try {
includeOnce(folder + '/' + file);
} catch (err) {
// if (ext.vars) {
// console.log(ext.vars.dump(err));
// } else {
sys.puts(err);
// }
}
}
}
};
includeFolderOnce('./extensions');
includeOnce('./bin/Lara.js');
var lara = new Lara();
You still need to inform what you want to export
includeOnce('./bin/WebServer.js');
function Lara() {
this.webServer = new WebServer();
this.webServer.start();
}
Lara.prototype.webServer = null;
module.exports.Lara = Lara;
You can simple just require('./filename').
Eg.
// file: index.js
var express = require('express');
var app = express();
var child = require('./child');
app.use('/child', child);
app.get('/', function (req, res) {
res.send('parent');
});
app.listen(process.env.PORT, function () {
console.log('Example app listening on port '+process.env.PORT+'!');
});
// file: child.js
var express = require('express'),
child = express.Router();
console.log('child');
child.get('/child', function(req, res){
res.send('Child2');
});
child.get('/', function(req, res){
res.send('Child');
});
module.exports = child;
Please note that:
you can't listen PORT on the child file, only parent express module has PORT listener
Child is using 'Router', not parent Express moudle.
Node works based on commonjs modules and more recently, esm modules. Basically, you should create modules in separated .js files and make use of imports/exports (module.exports and require).
Javascript on the browser works differently, based on scope. There is the global scope, and through clojures (functions inside other functions) you have private scopes.
So,in node, export functions and objects that you will consume in other modules.
The cleanest way IMO is the following, In tools.js:
function A(){
.
.
.
}
function B(){
.
.
.
}
module.exports = {
A,
B
}
Then, in app.js, just require the tools.js as following: const tools = require("tools");
I was as well searching for an option to include code without writing modules, resp. use the same tested standalone sources from a different project for a Node.js service - and jmparattes answer did it for me.
The benefit is, you don't pollute the namespace, I don't have trouble with "use strict"; and it works well.
Here a full sample:
Script to load - /lib/foo.js
"use strict";
(function(){
var Foo = function(e){
this.foo = e;
}
Foo.prototype.x = 1;
return Foo;
}())
SampleModule - index.js
"use strict";
const fs = require('fs');
const path = require('path');
var SampleModule = module.exports = {
instAFoo: function(){
var Foo = eval.apply(
this, [fs.readFileSync(path.join(__dirname, '/lib/foo.js')).toString()]
);
var instance = new Foo('bar');
console.log(instance.foo); // 'bar'
console.log(instance.x); // '1'
}
}
Hope this was helpfull somehow.
Like you are having a file abc.txt and many more?
Create 2 files: fileread.js and fetchingfile.js, then in fileread.js write this code:
function fileread(filename) {
var contents= fs.readFileSync(filename);
return contents;
}
var fs = require("fs"); // file system
//var data = fileread("abc.txt");
module.exports.fileread = fileread;
//data.say();
//console.log(data.toString());
}
In fetchingfile.js write this code:
function myerror(){
console.log("Hey need some help");
console.log("type file=abc.txt");
}
var ags = require("minimist")(process.argv.slice(2), { string: "file" });
if(ags.help || !ags.file) {
myerror();
process.exit(1);
}
var hello = require("./fileread.js");
var data = hello.fileread(ags.file); // importing module here
console.log(data.toString());
Now, in a terminal:
$ node fetchingfile.js --file=abc.txt
You are passing the file name as an argument, moreover include all files in readfile.js instead of passing it.
Thanks
Another method when using node.js and express.js framework
var f1 = function(){
console.log("f1");
}
var f2 = function(){
console.log("f2");
}
module.exports = {
f1 : f1,
f2 : f2
}
store this in a js file named s and in the folder statics
Now to use the function
var s = require('../statics/s');
s.f1();
s.f2();
To turn "tools" into a module, I don't see hard at all. Despite all the other answers I would still recommend use of module.exports:
//util.js
module.exports = {
myFunction: function () {
// your logic in here
let message = "I am message from myFunction";
return message;
}
}
Now we need to assign this exports to global scope (in your app|index|server.js )
var util = require('./util');
Now you can refer and call function as:
//util.myFunction();
console.log(util.myFunction()); // prints in console :I am message from myFunction
To interactively test the module ./test.js in a Unix environment, something like this could be used:
>> node -e "eval(''+require('fs').readFileSync('./test.js'))" -i
...
Use:
var mymodule = require("./tools.js")
app.js:
module.exports.<your function> = function () {
<what should the function do>
}

what the difference in the export method of nodejs [duplicate]

I've found the following contract in a Node.js module:
module.exports = exports = nano = function database_module(cfg) {...}
I wonder what's the difference between module.exports and exports and why both are used here.
Even though question has been answered and accepted long ago, i just want to share my 2 cents:
You can imagine that at the very beginning of your file there is something like (just for explanation):
var module = new Module(...);
var exports = module.exports;
So whatever you do just keep in mind that module.exports and NOT exports will be returned from your module when you're requiring that module from somewhere else.
So when you do something like:
exports.a = function() {
console.log("a");
}
exports.b = function() {
console.log("b");
}
You are adding 2 functions a and b to the object to which module.exports points, so the typeof the returning result will be an object : { a: [Function], b: [Function] }
Of course, this is the same result you will get if you are using module.exports in this example instead of exports.
This is the case where you want your module.exports to behave like a container of exported values. Whereas, if you only want to export a constructor function then there is something you should know about using module.exports or exports;(Remember again that module.exports will be returned when you require something, not export).
module.exports = function Something() {
console.log('bla bla');
}
Now typeof returning result is 'function' and you can require it and immediately invoke like:
var x = require('./file1.js')(); because you overwrite the returning result to be a function.
However, using exports you can't use something like:
exports = function Something() {
console.log('bla bla');
}
var x = require('./file1.js')(); //Error: require is not a function
Because with exports, the reference doesn't point anymore to the object where module.exports points, so there is not a relationship between exports and module.exports anymore. In this case module.exports still points to the empty object {} which will be returned.
The accepted answer from another topic should also help:
Does JavaScript pass by reference?
Setting module.exports allows the database_module function to be called like a function when required. Simply setting exports wouldn't allow the function to be
exported because node exports the object module.exports references. The following code wouldn't allow the user to call the function.
module.js
The following won't work.
exports = nano = function database_module(cfg) {return;}
The following will work if module.exports is set.
module.exports = exports = nano = function database_module(cfg) {return;}
console
var func = require('./module.js');
// the following line will **work** with module.exports
func();
Basically node.js doesn't export the object that exports currently references, but exports the properties of what exports originally references. Although Node.js does export the object module.exports references, allowing you to call it like a function.
2nd least important reason
They set both module.exports and exports to ensure exports isn't referencing the prior exported object. By setting both you use exports as a shorthand and avoid potential bugs later on down the road.
Using exports.prop = true instead of module.exports.prop = true saves characters and avoids confusion.
Basically the answer lies in what really happens when a module is required via require statement. Assuming this is the first time the module is being required.
For example:
var x = require('file1.js');
contents of file1.js:
module.exports = '123';
When the above statement is executed, a Module object is created. Its constructor function is:
function Module(id, parent) {
this.id = id;
this.exports = {};
this.parent = parent;
if (parent && parent.children) {
parent.children.push(this);
}
this.filename = null;
this.loaded = false;
this.children = [];
}
As you see each module object has a property with name exports. This is what is eventually returned as part of require.
Next step of require is to wrap the contents of file1.js into an anonymous function like below:
(function (exports, require, module, __filename, __dirname) {
//contents from file1.js
module.exports = '123;
});
And this anonymous function is invoked the following way, module here refers to the Module Object created earlier.
(function (exports, require, module, __filename, __dirname) {
//contents from file1.js
module.exports = '123;
}) (module.exports,require, module, "path_to_file1.js","directory of the file1.js");
As we can see inside the function, exports formal argument refers to module.exports. In essence it's a convenience provided to the module programmer.
However this convenience need to be exercised with care. In any case if trying to assign a new object to exports ensure we do it this way.
exports = module.exports = {};
If we do it following way wrong way, module.exports will still be pointing to the object created as part of module instance.
exports = {};
As as result adding anything to the above exports object will have no effect to module.exports object and nothing will be exported or returned as part of require.
Initially,module.exports=exports , and the require function returns the object module.exports refers to.
if we add property to the object, say exports.a=1, then module.exports and exports still refer to the same object. So if we call require and assign the module to a variable, then the variable has a property a and its value is 1;
But if we override one of them, for example, exports=function(){}, then they are different now: exports refers to a new object and module.exports refer to the original object. And if we require the file, it will not return the new object, since module.exports is not refer to the new object.
For me, i will keep adding new property, or override both of them to a new object. Just override one is not right. And keep in mind that module.exports is the real boss.
exports and module.exports are the same unless you reassign exports within your module.
The easiest way to think about it, is to think that this line is implicitly at the top of every module.
var exports = module.exports = {};
If, within your module, you reassign exports, then you reassign it within your module and it no longer equals module.exports. This is why, if you want to export a function, you must do:
module.exports = function() { ... }
If you simply assigned your function() { ... } to exports, you would be reassigning exports to no longer point to module.exports.
If you don't want to refer to your function by module.exports every time, you can do:
module.exports = exports = function() { ... }
Notice that module.exports is the left most argument.
Attaching properties to exports is not the same since you are not reassigning it. That is why this works
exports.foo = function() { ... }
JavaScript passes objects by copy of a reference
It's a subtle difference to do with the way objects are passed by reference in JavaScript.
exports and module.exports both point to the same object. exports is a variable and module.exports is an attribute of the module object.
Say I write something like this:
exports = {a:1};
module.exports = {b:12};
exports and module.exports now point to different objects. Modifying exports no longer modifies module.exports.
When the import function inspects module.exports it gets {b:12}
I just make some test, it turns out that, inside nodejs's module code, it should something like this:
var module.exports = {};
var exports = module.exports;
so:
1:
exports = function(){}; // this will not work! as it make the exports to some other pointer
module.exports = function(){}; // it works! cause finally nodejs make the module.exports to export.
2:
exports.abc = function(){}; // works!
exports.efg = function(){}; // works!
3: but, while in this case
module.exports = function(){}; // from now on we have to using module.exports to attach more stuff to exports.
module.exports.a = 'value a'; // works
exports.b = 'value b'; // the b will nerver be seen cause of the first line of code we have do it before (or later)
To understand the differences, you have to first understand what Node.js does to every module during runtime. Node.js creates a wrapper function for every module:
(function(exports, require, module, __filename, __dirname) {
})()
Notice the first param exports is an empty object, and the third param module is an object with many properties, and one of the properties is named exports. This is what exports comes from and what module.exports comes from. The former one is a variable object, and the latter one is a property of module object.
Within the module, Node.js automatically does this thing at the beginning: module.exports = exports, and ultimately returns module.exports.
So you can see that if you reassign some value to exports, it won't have any effect to module.exports. (Simply because exports points to another new object, but module.exports still holds the old exports)
let exports = {};
const module = {};
module.exports = exports;
exports = { a: 1 }
console.log(module.exports) // {}
But if you updates properties of exports, it will surely have effect on module.exports. Because they both point to the same object.
let exports = {};
const module = {};
module.exports = exports;
exports.a = 1;
module.exports.b = 2;
console.log(module.exports) // { a: 1, b: 2 }
Also notice that if you reassign another value to module.exports, then it seems meaningless for exports updates. Every updates on exports is ignored because module.exports points to another object.
let exports = {};
const module = {};
module.exports = exports;
exports.a = 1;
module.exports = {
hello: () => console.log('hello')
}
console.log(module.exports) // { hello: () => console.log('hello')}
Here is a good description written about node modules in node.js in action book from Manning publication.
What ultimately gets exported in your application is module.exports. exports is set
up simply as a global reference to module.exports , which initially is defined as an
empty object that you can add properties to. So exports.myFunc is just shorthand
for module.exports.myFunc.
As a result, if exports is set to anything else, it breaks the reference between
module.exports and exports . Because module.exports is what really gets
exported, exports will no longer work as expected—it doesn’t reference module
.exports anymore. If you want to maintain that link, you can make module.exports
reference exports again as follows:
module.exports = exports = db;
I went through some tests and I think this may shed some light on the subject...
app.js:
var ...
, routes = require('./routes')
...;
...
console.log('#routes', routes);
...
versions of /routes/index.js:
exports = function fn(){}; // outputs "#routes {}"
exports.fn = function fn(){}; // outputs "#routes { fn: [Function: fn] }"
module.exports = function fn(){}; // outputs "#routes function fn(){}"
module.exports.fn = function fn(){}; // outputs "#routes { fn: [Function: fn] }"
I even added new files:
./routes/index.js:
module.exports = require('./not-index.js');
module.exports = require('./user.js');
./routes/not-index.js:
exports = function fn(){};
./routes/user.js:
exports = function user(){};
We get the output "#routes {}"
./routes/index.js:
module.exports.fn = require('./not-index.js');
module.exports.user = require('./user.js');
./routes/not-index.js:
exports = function fn(){};
./routes/user.js:
exports = function user(){};
We get the output "#routes { fn: {}, user: {} }"
./routes/index.js:
module.exports.fn = require('./not-index.js');
module.exports.user = require('./user.js');
./routes/not-index.js:
exports.fn = function fn(){};
./routes/user.js:
exports.user = function user(){};
We get the output "#routes { user: [Function: user] }"
If we change user.js to { ThisLoadedLast: [Function: ThisLoadedLast] }, we get the output "#routes { ThisLoadedLast: [Function: ThisLoadedLast] }".
But if we modify ./routes/index.js...
./routes/index.js:
module.exports.fn = require('./not-index.js');
module.exports.ThisLoadedLast = require('./user.js');
./routes/not-index.js:
exports.fn = function fn(){};
./routes/user.js:
exports.ThisLoadedLast = function ThisLoadedLast(){};
... we get "#routes { fn: { fn: [Function: fn] }, ThisLoadedLast: { ThisLoadedLast: [Function: ThisLoadedLast] } }"
So I would suggest always use module.exports in your module definitions.
I don't completely understand what's going on internally with Node, but please comment if you can make more sense of this as I'm sure it helps.
-- Happy coding
This shows how require() works in its simplest form, excerpted from Eloquent JavaScript
Problem
It is not possible for a module to directly export a value other than the exports object, such as a function. For example, a module might want to export only the constructor of the object type it defines. Right now, it cannot do that because require always uses the exports object it creates as the exported value.
Solution
Provide modules with another variable, module, which is an object that has a property exports. This property initially points at the empty object created by require but can be overwritten with another value in order to export something else.
function require(name) {
if (name in require.cache)
return require.cache[name];
var code = new Function("exports, module", readFile(name));
var exports = {}, module = {exports: exports};
code(exports, module);
require.cache[name] = module.exports;
return module.exports;
}
require.cache = Object.create(null);
Here is the result of
console.log("module:");
console.log(module);
console.log("exports:");
console.log(exports);
console.log("module.exports:");
console.log(module.exports);
Also:
if(module.exports === exports){
console.log("YES");
}else{
console.log("NO");
}
//YES
Note:
The CommonJS specification only allows the use of the exports variable to expose public members. Therefore, the named exports pattern is the only one that is really compatible with the CommonJS specification. The use of module.exports is an extension provided by Node.js to support a broader range of module definition patterns.
var a = {},md={};
//Firstly,the exports and module.exports point the same empty Object
exp = a;//exports =a;
md.exp = a;//module.exports = a;
exp.attr = "change";
console.log(md.exp);//{attr:"change"}
//If you point exp to other object instead of point it's property to other object. The md.exp will be empty Object {}
var a ={},md={};
exp =a;
md.exp =a;
exp = function(){ console.log('Do nothing...'); };
console.log(md.exp); //{}
From the docs
The exports variable is available within a module's file-level scope, and is assigned the value of module.exports before the module is evaluated.
It allows a shortcut, so that module.exports.f = ... can be written more succinctly as exports.f = .... However, be aware that like any variable, if a new value is assigned to exports, it is no longer bound to module.exports:
It is just a variable pointing to module.exports.
I found this link useful to answer the above question.
http://timnew.me/blog/2012/04/20/exports-vs-module-exports-in-node-js/
To add to the other posts The module system in node does
var exports = module.exports
before executing your code. So when you want to exports = foo , you probably want to do module.exports = exports = foo but using exports.foo = foo should be fine
"If you want the root of your module's export to be a function (such as a constructor) or if you want to export a complete object in one assignment instead of building it one property at a time, assign it to module.exports instead of exports." - http://nodejs.org/api/modules.html
Let's create one module with 2 ways:
One way
var aa = {
a: () => {return 'a'},
b: () => {return 'b'}
}
module.exports = aa;
Second way
exports.a = () => {return 'a';}
exports.b = () => {return 'b';}
And this is how require() will integrate module.
First way:
function require(){
module.exports = {};
var exports = module.exports;
var aa = {
a: () => {return 'a'},
b: () => {return 'b'}
}
module.exports = aa;
return module.exports;
}
Second way
function require(){
module.exports = {};
var exports = module.exports;
exports.a = () => {return 'a';}
exports.b = () => {return 'b';}
return module.exports;
}
module.exports and exports both point to the same object before the module is evaluated.
Any property you add to the module.exports object will be available when your module is used in another module using require statement. exports is a shortcut made available for the same thing. For instance:
module.exports.add = (a, b) => a+b
is equivalent to writing:
exports.add = (a, b) => a+b
So it is okay as long as you do not assign a new value to exports variable. When you do something like this:
exports = (a, b) => a+b
as you are assigning a new value to exports it no longer has reference to the exported object and thus will remain local to your module.
If you are planning to assign a new value to module.exports rather than adding new properties to the initial object made available, you should probably consider doing as given below:
module.exports = exports = (a, b) => a+b
Node.js website has a very good explanation of this.
1.exports -> use as singleton utility
2. module-exports -> use as logical objects such as service , model etc
why both are used here
I believe they just want to be clear that module.exports, exports, and nano point to the same function - allowing you to use either variable to call the function within the file. nano provides some context to what the function does.
exports won't be exported (only module.exports will), so why bother overwriting that as well?
The verbosity trade-off limits the risk of future bugs, such as using exports instead of module.exports within the file. It also provides clarification that module.exports and exports are in fact pointing to the same value.
module.exports vs exports
As long as you don't reassign module.exports or exports (and instead add values to the object they both refer to), you won't have any issues and can safely use exports to be more concise.
When assigning either to a non-object, they are now pointing to different places which can be confusing unless you intentionally want module.exports to be something specific (such as a function).
Setting exports to a non-object doesn't make much sense as you'll have to set module.exports = exports at the end to be able to use it in other files.
let module = { exports: {} };
let exports = module.exports;
exports.msg = 'hi';
console.log(module.exports === exports); // true
exports = 'yo';
console.log(module.exports === exports); // false
exports = module.exports;
console.log(module.exports === exports); // true
module.exports = 'hello';
console.log(module.exports === exports); // false
module.exports = exports;
console.log(module.exports === exports); // true
Why assign module.exports to a function?
More concise! Compare how much shorter the 2nd example is:
helloWorld1.js: module.exports.hello = () => console.log('hello world');
app1.js: let sayHello = require('./helloWorld1'); sayHello.hello; // hello world
helloWorld2.js: module.exports = () => console.log('hello world');
app2.js: let sayHello = require('./helloWorld2'); sayHello; // hello world
Each file you create is a module. module is an object. It has property called exports : {} which is empty object by default.
you can create functions/middlewares and add to this empty exports object such as exports.findById() => { ... } then require anywhere in your app and use...
controllers/user.js
exports.findById = () => {
// do something
}
require in routes.js to use:
const {findyId} = './controllers/user'
in node js module.js file is use to run the module.load system.every time when node execute a file it wrap your js file content as follow
'(function (exports, require, module, __filename, __dirname) {',+
//your js file content
'\n});'
because of this wrapping inside ur js source code you can access exports,require,module,etc..
this approach is used because there is no other way to get functionalities wrote in on js file to another.
then node execute this wrapped function using c++. at that moment exports object that passed into this function will be filled.
you can see inside this function parameters exports and module.
actually exports is a public member of module constructor function.
look at following code
copy this code into b.js
console.log("module is "+Object.prototype.toString.call(module));
console.log("object.keys "+Object.keys(module));
console.log(module.exports);
console.log(exports === module.exports);
console.log("exports is "+Object.prototype.toString.call(exports));
console.log('----------------------------------------------');
var foo = require('a.js');
console.log("object.keys of foo: "+Object.keys(foo));
console.log('name is '+ foo);
foo();
copy this code to a.js
exports.name = 'hello';
module.exports.name = 'hi';
module.exports.age = 23;
module.exports = function(){console.log('function to module exports')};
//exports = function(){console.log('function to export');}
now run using node
this is the output
module is [object Object]
object.keys id,exports,parent,filename,loaded,children,paths
{}
true
exports is [object Object]
object.keys of foo:
name is function (){console.log('function to module exports')}
function to module exports
now remove the commented line in a.js and comment the line above that line
and remove the last line of b.js and run.
in javascript world you cannot reassign object that passed as parameter but you can change function's public member when object of that function set as a parameter to another function
do remember
use module.exports on and only if you wants to get a function when you use require keyword .
in above example we var foo = require(a.js); you can see we can call foo as a function;
this is how node documentation explain it
"The exports object is created by the Module system. Sometimes this is not acceptable, many want their module to be an instance of some class. To do this assign the desired export object to module.exports."
Both module.exports and exports point to the same function database_module(cfg) {...}.
1| var a, b;
2| a = b = function() { console.log("Old"); };
3| b = function() { console.log("New"); };
4|
5| a(); // "Old"
6| b(); // "New"
You can change b on line 3 to a, the output is reverse. The conclusion is:
a and b are independent.
So module.exports = exports = nano = function database_module(cfg) {...} is equivalent to:
var f = function database_module(cfg) {...};
module.exports = f;
exports = f;
Assumed the above is module.js, which is required by foo.js. The benefits of module.exports = exports = nano = function database_module(cfg) {...} is clear now:
In foo.js, since module.exports is require('./module.js'):
var output = require('./modules.js')();
In moduls.js: You can use exports instead of module.exports.
So, you will be happy if both exports and module.exports pointing to the same thing.
exports: it's a reference to module.exports object
both exports and module.exports point to the same object
until we change the reference of exports object
Example:
if exports.a = 10 then module.exports.a = 10
if we reassign exports object explicitly inside the code like
exports = {} now its lost the reference to module.exports

NodeJS requiring modules, module.exports.X vs module.exports={x}

I'm having trouble understanding the difference between exporting modules like:
module.exports.getUserIP = function getUserIP(req) {
var ip = req.headers['x-forwarded-for'];
return ip;
}
Or just declaring it:
function getUserIP(req) {
// retrieve user IP from req object
// Build this function to be more accurate/use more sources.
var ip = req.headers['x-forwarded-for'];
return ip;
}
and exporting at the bottom:
module.exports = { getUserIP }
or even:
module.exports = {getUserIP:getUserIP}
or
module.exports = {'getUserIP':getUserIP}
My problem is: when i call the function getUserIP from another file:
var mainbody = require('./app.js');//getUserIP is in here.
const gl = require('geoip-lite');
var ax = require('axios');
module.exports.getloc = function getloc(req, ip, property) {
//return location from IP.
if (req) {
var ipGuest = mainbody.getUserIP(req); //HERE
} else {
var ipGuest = ip;
}....
I get an error message:
Error Message
However, when I use the FIRST method to export the function:
module.exports.getUserIP = function getUserIP(req) {
var ip = req.headers['x-forwarded-for'];
return ip;
}
Then it works perfectly.
What's the difference?
Better way is to use
module.exports = { getUserIP: getUserIP }
This way you can just look at the export statement at the end of your file and know which functions are being exported from a particular file
The module.exports = {getUserIP}; is nothing but a shorthand of the above syntax(ES6 Magic). What it typically does is allows you to write this way { getUserIP } if the key name to be same as function/variable name like { getUserIP: getUserIP } where getUserIP can be a variable or a function or a ES6 class.
All the examples you show will work properly, but they do have some different affects.
By default module.exports is already initialized to an empty object. So, when you do something like this:
module.exports.getUserIP = function() {...}
You are assigning a new property to the existing object that module.exports already pointed to. One advantage of this scheme is that you can easily add more properties the same way.
module.exports.getUserRegion = function() {}
This will add one more property to that same object without disturbing the first one you already added.
On the other hand, all of these are identical:
module.exports = {getUserIP: getUserIP}
module.exports = {'getUserIP':getUserIP}
module.exports = { getUserIP } // ES6 shorthand for the previous syntax
and, they all end up with the same result as each other, but they all replace module.exports with a new object that has your one new property in it.
If you then tried to add another property:
module.exports = {getUserRegion};
That would again assign a whole new object to module.exports and you would have just wiped out the object that previously had getUserIP on it. When assigning a new object, you would typically assign an object that had all your properties on it:
module.exports = {getUserIP: function() {...}, getUserRegion: function() {...}};
Thus, not wiping out something you had already put there.
All of your schemes should work fine as long as you aren't overwriting module.exports with a new object and thus overwriting the object that already had some of your methods on it.
To understand this exporting modules concept, just think module.export is a simple object. you can bind anything to that object as do with normal javascript objects.
Finally when you require that module by require('path to js') you will get that exported object. If you export number of items in your module you can return them back by giving the names of the tag.

pass optional parameters to require()

so, I have this problem - and when I have a problem with JavaScript or node inevitably it is my coding that is the problem ;)
So at the risk of ridicule, this is the problem:
I have a module that has an optional parameter for config
Using the standard pattern, this is what I have:
module.exports = function(opts){
return {
// module instance
};
}
and in the calling code there is this
var foo = require('bar')({option: value})
if there are no options to pass, the code looks like this
var foo = require('bar')({})
which kinda looks ugly
so, I wanted to do this
var foo = require('bar')
which doesn't work, as the exports is a function call
so, to the meat of the issue
a) is there any way of achieving this lofty goal ?
b) is there a better pattern of passing parameters to a module ?
many thanks - and I hope that once the laughter has passed you will be able to send some help my way :)
Instead of removing the function call completely, you could make the options argument options to remove the need for an empty object:
module.exports = function(opts) {
opts = opts || {};
return {
// module instance
};
}
It doesn't completely remove the need for () but is better than ({}).
tldr: stick with require('foo')('bar');
There's no way to pass additional parameters to require. Here's the source code, notice how it only takes a single argument:
Module.prototype.require = function(path) {
assert(util.isString(path), 'path must be a string');
assert(path, 'missing path');
return Module._load(path, this);
};
If you really really really want to avoid ()(), you could try something like this:
b.js
'use strict';
module.exports = {
x: 'default',
configure: function (x) {
this.x = x;
},
doStuff: function () {
return 'x is ' + this.x;
}
};
a.js
'use strict';
var b = require('./b');
// Default config:
console.log(b.doStuff()); // 'x is default'
// Reconfigure:
b.configure(42);
console.log(b.doStuff()); // 'x is 42'
But I think it's uglier... stick with the original idea.

Resources