Spark Structured Streaming resource contention / memory issue - apache-spark

We have a Spark Structured streaming stream which is using mapGroupWithState. After some time of processing in a stable manner suddenly each mini batch starts taking 40 seconds. Suspiciously it looks like exactly 40 seconds each time. Before this the batches were taking less than a second.
Looking at the details for a particular task most partitions are processed really quickly but a few take exactly 40 seconds:
The GC was looking ok as the data was being processed quickly but suddenly the full GCs etc stop (at the same time as the 40 second issue):
I have taken a thread dump from one of the executors as this issue is happening but I cannot see any resource they are blocked on:
Are we hitting a GC problem and why is it manifesting in this way? Is there another resource that is blocking and what is it?

Try give more HEAP space to see if GC was still so overwhelming, if so you are very likely to have mem leak issue
what spark version were you using? If its spark 2.3.1 there were known FD leakage issue if you were reading data from Kafka (which is extremely common), to figure out if your job is leaking FD, take a look at FD usage in container process in slave, usually it should be very consistently around 100 to 200, and simply upgrade to spark 2.3.2 will fix this issue, I`m so surprised that this issue was so fundamental but never get enough visibilities

Related

Unexplainable delay in a few executors' task execution time (logs attached)

We are facing a rather unexplainable behaviour in Spark.
Some facts:
The spark streaming is running for hours without any issues.
All of a sudden, a particular section of the code starts to take longer
(data size has not increased) When we look into the execution, we
noticed that the delay is due to a few executors where the processing
takes multipleĀ folds longer than on all the others (the data per task
is the same, with no GC increase according to Spark UI)
See the logs below. If we compare a 'normal' executor log with a 'stuck' executor
log we can see that two log lines take a minute longer than on a
normal one
A restart usually solves the issue for some hours, and then it starts occuring again
Version PySpark 2.4.4.Spark Streaming.
We are really lost, and can't figure out what's going on. Does anyone have any suggestions?
Log example:
'Normal'
'stuck':

How do you find out exactly what had caused the high GC time for the spark tasks in any given spark stage?

I do have a spark application where in one of the spark stage took most of the time 2.5hrs + . I did a dive deep and found for majority of the tasks the GC time was pretty high 60% of total task execution time.
The question that I have is :
How do i co-relate this piece of spark task with my code ?
enter image description here
How do I identify what part of my spark code written using PySpark had caused the high GC time ? enter image description here
In general what causes high GC time for any given spark task , I want to know ?
High GC means frequent GC or GC taking long time. A few suggestions with the limited info I could gather from the screenshots:
One thing to check is are you caching big rdd/rdd's. Uncaching them as soon as they are no longer required will reduce the memory pressure. Is stage 68 part of first job, uncache unrequired data from previous jobs?
How to figure out which operation is this: Use DAG visualization link on the top of stage,job pages to understand the flow. For SQL use SQL tab on the UI.
Also there are 2000 tasks for ~ 40GB of shuffle data, each task handling 20 MB which is very small. better to have atleast ~128MB per task. tune this parallelism back to default 200 ?
If you can't optimize your code then, use more memory by adding more nodes or nodes with larger memory.
From experience, high GC time is caused by tasks requiring more than the available memory. High GC time is often also accompanied by the tasks spilling to disk (entries in the Memory Spill and Disk Spill columns).
Also, from Learning Spark:
A high GC time signals too many objects on the heap (your executors may be memory-starved).
Damji, Jules S.,Wenig, Brooke,Das, Tathagata,Lee, Denny.
In my experience, a good mitigation is to increase the number of partitions read by the given stage to reduce the memory required by the individual tasks e.g. by decreasing spark.files.maxPartitionBytes when reading files, or increasing spark.sql.shuffle.partitions when joining dataframes.

spark kafka 10 consumer (DirectStream) Hangs

it seems that we are having same issue as described here:
https://issues.apache.org/jira/browse/SPARK-20780
I am already aware that its a Kafka issue rather then spark, but still would like to get some advice on how to act until that issue would be resolved by the Kafka community.
Increasing the request.timeout is not much helping, because then we could get large queue. For example if the micro-batch is 10 seconds and the Kafka request.timeout.ms is 20 seconds, each time that the issue occurs, it would create a delay of around 20 seconds which would lead to 2 micro-batches queuing up. Obviously the more it happens, the more delays it causes which eventually leads to quite a large queue.
Any best practices / workarounds / tips for how to overcome that issue until it would be resolved ?

"Container killed by YARN for exceeding memory limits. 10.4 GB of 10.4 GB physical memory used" on an EMR cluster with 75GB of memory

I'm running a 5 node Spark cluster on AWS EMR each sized m3.xlarge (1 master 4 slaves). I successfully ran through a 146Mb bzip2 compressed CSV file and ended up with a perfectly aggregated result.
Now I'm trying to process a ~5GB bzip2 CSV file on this cluster but I'm receiving this error:
16/11/23 17:29:53 WARN TaskSetManager: Lost task 49.2 in stage 6.0 (TID xxx, xxx.xxx.xxx.compute.internal): ExecutorLostFailure (executor 16 exited caused by one of the running tasks) Reason: Container killed by YARN for exceeding memory limits. 10.4 GB of 10.4 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead.
I'm confused as to why I'm getting a ~10.5GB memory limit on a ~75GB cluster (15GB per 3m.xlarge instance)...
Here is my EMR config:
[
{
"classification":"spark-env",
"properties":{
},
"configurations":[
{
"classification":"export",
"properties":{
"PYSPARK_PYTHON":"python34"
},
"configurations":[
]
}
]
},
{
"classification":"spark",
"properties":{
"maximizeResourceAllocation":"true"
},
"configurations":[
]
}
]
From what I've read, setting the maximizeResourceAllocation property should tell EMR to configure Spark to fully utilize all resources available on the cluster. Ie, I should have ~75GB of memory available... So why am I getting a ~10.5GB memory limit error?
Here is the code I'm running:
def sessionize(raw_data, timeout):
# https://www.dataiku.com/learn/guide/code/reshaping_data/sessionization.html
window = (pyspark.sql.Window.partitionBy("user_id", "site_id")
.orderBy("timestamp"))
diff = (pyspark.sql.functions.lag(raw_data.timestamp, 1)
.over(window))
time_diff = (raw_data.withColumn("time_diff", raw_data.timestamp - diff)
.withColumn("new_session", pyspark.sql.functions.when(pyspark.sql.functions.col("time_diff") >= timeout.seconds, 1).otherwise(0)))
window = (pyspark.sql.Window.partitionBy("user_id", "site_id")
.orderBy("timestamp")
.rowsBetween(-1, 0))
sessions = (time_diff.withColumn("session_id", pyspark.sql.functions.concat_ws("_", "user_id", "site_id", pyspark.sql.functions.sum("new_session").over(window))))
return sessions
def aggregate_sessions(sessions):
median = pyspark.sql.functions.udf(lambda x: statistics.median(x))
aggregated = sessions.groupBy(pyspark.sql.functions.col("session_id")).agg(
pyspark.sql.functions.first("site_id").alias("site_id"),
pyspark.sql.functions.first("user_id").alias("user_id"),
pyspark.sql.functions.count("id").alias("hits"),
pyspark.sql.functions.min("timestamp").alias("start"),
pyspark.sql.functions.max("timestamp").alias("finish"),
median(pyspark.sql.functions.collect_list("foo")).alias("foo"),
)
return aggregated
spark_context = pyspark.SparkContext(appName="process-raw-data")
spark_session = pyspark.sql.SparkSession(spark_context)
raw_data = spark_session.read.csv(sys.argv[1],
header=True,
inferSchema=True)
# Windowing doesn't seem to play nicely with TimestampTypes.
#
# Should be able to do this within the ``spark.read.csv`` call, I'd
# think. Need to look into it.
convert_to_unix = pyspark.sql.functions.udf(lambda s: arrow.get(s).timestamp)
raw_data = raw_data.withColumn("timestamp",
convert_to_unix(pyspark.sql.functions.col("timestamp")))
sessions = sessionize(raw_data, SESSION_TIMEOUT)
aggregated = aggregate_sessions(sessions)
aggregated.foreach(save_session)
Basically, nothing more than windowing and a groupBy to aggregate the data.
It starts with a few of those errors, and towards halting increases in the amount of the same error.
I've tried running spark-submit with --conf spark.yarn.executor.memoryOverhead but that doesn't seem to solve the problem either.
I feel your pain..
We had similar issues of running out of memory with Spark on YARN. We have five 64GB, 16 core VMs and regardless of what we set spark.yarn.executor.memoryOverhead to, we just couldn't get enough memory for these tasks -- they would eventually die no matter how much memory we would give them. And this as a relatively straight-forward Spark application that was causing this to happen.
We figured out that the physical memory usage was quite low on the VMs but the virtual memory usage was extremely high (despite the logs complaining about physical memory). We set yarn.nodemanager.vmem-check-enabled in yarn-site.xml to false and our containers were no longer killed, and the application appeared to work as expected.
Doing more research, I found the answer to why this happens here: http://web.archive.org/web/20190806000138/https://mapr.com/blog/best-practices-yarn-resource-management/
Since on Centos/RHEL 6 there are aggressive allocation of virtual memory due to OS behavior, you should disable virtual memory checker or increase yarn.nodemanager.vmem-pmem-ratio to a relatively larger value.
That page had a link to a very useful page from IBM: https://web.archive.org/web/20170703001345/https://www.ibm.com/developerworks/community/blogs/kevgrig/entry/linux_glibc_2_10_rhel_6_malloc_may_show_excessive_virtual_memory_usage?lang=en
In summary, glibc > 2.10 changed its memory allocation. And although huge amounts of virtual memory being allocated isn't the end of the world, it doesn't work with the default settings of YARN.
Instead of setting yarn.nodemanager.vmem-check-enabled to false, you could also play with setting the MALLOC_ARENA_MAX environment variable to a low number in hadoop-env.sh. This bug report has helpful information about that: https://issues.apache.org/jira/browse/HADOOP-7154
I recommend reading through both pages -- the information is very handy.
If you're not using spark-submit, and you're looking for another way to specify the yarn.nodemanager.vmem-check-enabled parameter mentioned by Duff, here are 2 other ways:
Method 2
If you're using a JSON Configuration file (that you pass to the AWS CLI or to your boto3 script), you'll have to add the following configuration:
[{
"Classification": "yarn-site",
"Properties": {
"yarn.nodemanager.vmem-check-enabled": "false"
}
}]
Method 3
If you use the EMR console, add the following configuration:
classification=yarn-site,properties=[yarn.nodemanager.vmem-check-enabled=false]
See,
I had the same problem in a huge cluster that I'm working now. The problem will not be solved to adding memory to the worker. Sometimes in process aggregation spark will use more memory than it has and the spark jobs will start to use off-heap memory.
One simple example is:
If you have a dataset that you need to reduceByKey it will, sometimes, agregate more data in one worker than other, and if this data exeeds the memory of one worker you get that error message.
Adding the option spark.yarn.executor.memoryOverhead will help you if you set for 50% of the memory used for the worker (just for test, and see if it works, you can add less with more tests).
But you need to understand how Spark works with the Memory Allocation in the cluster:
The more common way Spark uses 75% of the machine memory. The rest goes to SO.
Spark has two types of memory during the execution. One part is for execution and the other is the storage. Execution is used for Shuffles, Joins, Aggregations and Etc. The storage is used for caching and propagating data accross the cluster.
One good thing about memory allocation, if you are not using cache in your execution you can set the spark to use that sotorage space to work with execution to avoid in part the OOM error. As you can see this in documentation of spark:
This design ensures several desirable properties. First, applications that do not use caching can use the entire space for execution, obviating unnecessary disk spills. Second, applications that do use caching can reserve a minimum storage space (R) where their data blocks are immune to being evicted. Lastly, this approach provides reasonable out-of-the-box performance for a variety of workloads without requiring user expertise of how memory is divided internally.
But how can we use that?
You can change some configurations, Add the MemoryOverhead configuration to your job call but, consider add this too: spark.memory.fraction change for 0.8 or 0.85 and reduce the spark.memory.storageFraction to 0.35 or 0.2.
Other configurations can help, but it need to check in your case. Se all these configuration here.
Now, what helps in My case.
I have a cluster with 2.5K workers and 2.5TB of RAM. And we were facing OOM error like yours. We just increase the spark.yarn.executor.memoryOverhead to 2048. And we enable the dynamic allocation. And when we call the job, we don't set the memory for the workers, we leave that for the Spark to decide. We just set the Overhead.
But for some tests for my small cluster, changing the size of execution and storage memory. That solved the problem.
Try repartition. It works in my case.
The dataframe was not so big at the very beginning when it was loaded with write.csv(). The data file amounted to be 10 MB or so, as may required say totally several 100 MB memory for each processing task in executor.
I checked the number of partitions to be 2 at the time.
Then it grew like a snowball during the following operations joining with other tables, adding new columns. And then I ran into the memory exceeding limits issue at a certain step.
I checked the number of partitions, it was still 2, derived from the original data frame I guess.
So I tried to repartition it at the very beginning, and there was no problem anymore.
I have not read many materials about Spark and YARN yet. What I do know is that there are executors in nodes. An executor could handle many tasks depending on the resources. My guess is one partition would be atomically mapped to one task. And its volume determines the resource usage. Spark could not slice it if one partition grows too big.
A reasonable strategy is to determine the nodes and container memory first, either 10GB or 5GB. Ideally, both could serve any data processing job, just a matter of time. Given the 5GB memory setting, the reasonable row for one partition you find, say is 1000 after testing (it won't fail any steps during the processing), we could do it as the following pseudo code:
RWS_PER_PARTITION = 1000
input_df = spark.write.csv("file_uri", *other_args)
total_rows = input_df.count()
original_num_partitions = input_df.getNumPartitions()
numPartitions = max(total_rows/RWS_PER_PARTITION, original_num_partitions)
input_df = input_df.repartition(numPartitions)
Hope it helps!
I had the same issue on small cluster running relatively small job on spark 2.3.1.
The job reads parquet file, removes duplicates using groupBy/agg/first then sorts and writes new parquet. It processed 51 GB of parquet files on 4 nodes (4 vcores, 32Gb RAM).
The job was constantly failing on aggregation stage. I wrote bash script watch executors memory usage and found out that in the middle of the stage one random executor starts taking double memory for a few seconds. When I correlated time of this moment with GC logs it matched with full GC that empties big amount of memory.
At last I understood that the problem is related somehow to GC. ParallelGC and G1 causes this issue constantly but ConcMarkSweepGC improves the situation. The issue appears only with small amount of partitions. I ran the job on EMR where OpenJDK 64-Bit (build 25.171-b10) was installed. I don't know the root cause of the issue, it could be related to JVM or operating system. But it is definitely not related to heap or off-heap usage in my case.
UPDATE1
Tried Oracle HotSpot, the issue is reproduced.

Spark Indefinite Waiting with "Asked to send map output locations for shuffle"

My jobs often hang with this kind of message:
14/09/01 00:32:18 INFO spark.MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to spark#*:37619
Would be great if someone could explain what Spark is doing when it spits out this message. What does this message mean? What could the user be doing wrong to cause this? What configurables should be tuned?
It's really hard to debug because it doesn't OOM, it doesn't give an ST, it just sits and sits and sits.
This has been an issue from Spark at least as far back as 1.0.0 and is still ongoing with Spark 1.5.0
Based on this thread more recent versions of spark have gotten better at shuffling (and reporting errors if it fails anyway). Also, the following tips were mentioned:
This is very likely because the serialized map output locations buffer
exceeds the akka frame size. Please try setting "spark.akka.frameSize"
(default 10 MB) to some higher number, like 64 or 128.
In the newest version of Spark, this would throw a better error, for
what it's worth.
A possible workaround:
If the distribution of the keys in your groupByKey is skewed (some
keys appear way more often than others) you should consider modifying
your job to use reduceByKey instead wherever possible.
And a side track:
The issue was fixed for me by allocating just one core per executor.
maybe your executor-memory config should be divided by executor-cores

Resources