Pattern bindings for existential constructors - haskell

While writing Haskell as a programmer that had exposure to Lisp before, something odd came to my attention, which I failed to understand.
This compiles fine:
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE ExistentialQuantification #-}
data Foo = forall a. Show a => Foo { getFoo :: a }
showfoo :: Foo -> String
showfoo Foo{getFoo} = do
show getFoo
whereas this fails:
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE ExistentialQuantification #-}
data Foo = forall a. Show a => Foo { getFoo :: a }
showfoo :: Foo -> String
showfoo foo = do
let Foo{getFoo} = foo
show getFoo
To me it's not obvious why the second snippet fails.
The question would be:
Do I miss something or stems this behaviour from the fact that haskell is not homoiconic?
My reasoning is, given that:
Haskell needs to implement record pattern matching as a compiler extension, because of it's choice to use syntax rather than data.
Matching in a function head or in a let clause are two special cases.
It is difficult to understand those special cases, as they cannot be either implemented nor looked up directly in the language itself.
As an effect of this, consistent behaviour throughout the language is not guaranteed. Especially together with additional compiler extensions, as per example.
ps: compiler error:
error:
• My brain just exploded
I can't handle pattern bindings for existential or GADT data constructors.
Instead, use a case-expression, or do-notation, to unpack the constructor.
• In the pattern: Foo {getFoo}
In a pattern binding: Foo {getFoo} = foo
In the expression:
do { let Foo {getFoo} = foo;
show getFoo }
edit:
A different compiler version gives this error for the same problem
* Couldn't match expected type `p' with actual type `a'
because type variable `a' would escape its scope
This (rigid, skolem) type variable is bound by
a pattern with constructor: Foo :: forall a. Show a => a -> Foo

Do I miss something or stems this behaviour from the fact that haskell is not homoiconic?
No. Homoiconicity is a red herring: every language is homoiconic with its source text and its AST1, and indeed, Haskell is implemented internally as a series of desugaring passes between various intermediate languages.
The real problem is that let...in and case...of just have fundamentally different semantics, which is intentional. Pattern-matching with case...of is strict, in the sense that it forces the evaluation of the scrutinee in order to choose which RHS to evaluate, but pattern bindings in a let...in form are lazy. In that sense, let p = e1 in e2 is actually most similar to case e1 of ~p -> e2 (note the lazy pattern match using ~!), which produces a similar, albeit distinct, error message:
ghci> case undefined of { ~Foo{getFoo} -> show getFoo }
<interactive>:5:22: error:
• An existential or GADT data constructor cannot be used
inside a lazy (~) pattern
• In the pattern: Foo {getFoo}
In the pattern: ~Foo {getFoo}
In a case alternative: ~Foo {getFoo} -> show getFoo
This is explained in more detail in the answer to Odd ghc error message, "My brain just exploded"?.
1If this doesn’t satisfy you, note that Haskell is homoiconic in the sense that most Lispers use the word, since it supports an analog to Lisp’s quote operator in the form of [| ... |] quotation brackets, which are part of Template Haskell.

I thought about this a bit and albeit the behaviour seems odd at first, after some thinking I guess one can justify it perhaps thus:
Say I take your second (failing) example and after some massaging and value replacements I reduce it to this:
data Foo = forall a. Show a => Foo { getFoo :: a }
main::IO()
main = do
let Foo x = Foo (5::Int)
putStrLn $ show x
which produces the error:
Couldn't match expected type ‘p’ with actual type ‘a’ because type variable ‘a’ would escape its scope
if the pattern matching would be allowed, what would be the type of x? well.. the type would be of course Int. However the definition of Foo says that the type of the getFoo field is any type that is an instance of Show. An Int is an instance of Show, but it is not any type.. it is a specific one.. in this regard, the actual specific type of the value wrapped in that Foo would become "visible" (i.e. escape) and thus violate our explicit guarantee that forall a . Show a =>...
If we now look at a version of the code that works by using a pattern match in the function declaration:
data Foo = forall a . Show a => Foo { getFoo :: !a }
unfoo :: Foo -> String
unfoo Foo{..} = show getFoo
main :: IO ()
main = do
putStrLn . unfoo $ Foo (5::Int)
Looking at the unfoo function we see that there is nothing there saying that the type inside of the Foo is any specific type.. (an Int or otherwise) .. in the scope of that function all we have is the original guarantee that getFoo can be of any type which is an instance of Show. The actual type of the wrapped value remains hidden and unknowable so there are no violations of any type guarantees and happiness ensues.
PS: I forgot to mention that the Int bit was of course an example.. in your case, the type of the getFoo field inside of the foo value is of type a but this is a specific (non existential) type to which GHC's type inference is referring to (and not the existential a in the type declaration).. I just came up with an example with a specific Int type so that it would be easier and more intuitive to understand.

Related

Result type of a polyvariadic function in haskell

While studying polyvariadic functions in Haskell I stumbled across the following SO questions:
How to create a polyvariadic haskell function?
Haskell, polyvariadic function and type inference
and thought I will give it a try by implementing a function which takes a variable number of strings and concatenates/merges them into a single string:
{-# LANGUAGE FlexibleInstances #-}
class MergeStrings r where
merge :: String -> r
instance MergeStrings String where
merge = id
instance (MergeStrings r) => MergeStrings (String -> r) where
merge acc = merge . (acc ++)
This works so far if I call merge with at least one string argument and if I provide the final type.
foo :: String
foo = merge "a" "b" "c"
Omitting the final type results in an error, i.e., compiling the following
bar = merge "a" "b" "c"
results in
test.hs:12:7: error:
• Ambiguous type variable ‘t0’ arising from a use of ‘merge’
prevents the constraint ‘(MergeStrings t0)’ from being solved.
Relevant bindings include bar :: t0 (bound at test.hs:12:1)
Probable fix: use a type annotation to specify what ‘t0’ should be.
These potential instances exist:
instance MergeStrings r => MergeStrings (String -> r)
-- Defined at test.hs:6:10
instance MergeStrings String -- Defined at test.hs:4:10
• In the expression: merge "a" "b" "c"
In an equation for ‘bar’: bar = merge "a" "b" "c"
|
12 | bar = merge "a" "b" "c"
|
The error message makes perfect sense since I could easily come up with, for example
bar :: String -> String
bar = merge "a" "b" "c"
baz = bar "d"
rendering bar not into a single string but into a function which takes and returns one string.
Is there a way to tell Haskell that the result type must be of type String? For example, Text.Printf.printf "hello world" evaluates to type String without explicitly defining.
printf works without type annotation because of type defaulting in GHCi. The same mechanism that allows you to eval show $ 1 + 2 without specifying concrete types.
GHCi tries to evaluate expressions of type IO a, so you just need to add appropriate instance for MergeStrings:
instance (a ~ ()) => MergeStrings (IO a) where
merge = putStrLn
Brad (in a comment) and Max are not wrong saying that the defaulting of printf "…" … to IO ( ) is the reason for it working in ghci without type annotations. But it is not the end of the story. There are things we can do to make your definition of bar work.
First, I should mention the «monomorphism restriction» — an obscure and unintuitive type inference rule we have in Haskell. For whatever reason, the designers of Haskell decided that a top level definition without a type signature should have no polymorphic variables in its inferred type — that is, be monomorphic. bar is polymorphic, so you can see that it would be affected.
Some type classes (particularly numbers) have defaulting rules that allow you to say x = 13 without a type signature and have it inferred that x :: Integer — or whatever other type you set as default. Type defaulting is only available for a few blessed classes, so you cannot have it for your own class, and without a designated default GHC cannot decide what particular monomorphic type to choose.
But you can do other things, beside defaulting, to make the type checker happy — either:
Disable the monomorphism restriction.
Assign an explicit polymorphic type signature: bar :: MergeStrings r => r
Now bar is polymorphic and works as you would expect. See:
λ putStrLn bar
abc
λ putStrLn (bar "x")
abcx
λ putStrLn (bar "x" "y")
abcxy
You can also use defaulting to make expressions such as show bar work. Since Show is among the classes that you can default when extended default rules are enabled, you can issue default (String) in the module where you want to use show bar and it will work as you would expect.

Why do Haskell's scoped type variables not allow binding of type variables in pattern bindings?

I noticed that GHC's ScopedTypeVariables is able to bind type variables in function patterns but not let patterns.
As a minimal example, consider the type
data Foo where Foo :: Typeable a => a -> Foo
If I want to gain access to the type inside a Foo, the following function does not compile:
fooType :: Foo -> TypeRep
fooType (Foo x) =
let (_ :: a) = x
in typeRep (Proxy::Proxy a)
But using this trick to move the type variable binding to a function call, it works without issue:
fooType (Foo x) =
let helper (_ :: a) = typeRep (Proxy::Proxy a)
in helper x
Since let bindings are actually function bindings in disguise, why aren't the above two code snippets equivalent?
(In this example, other solutions would be to create the TypeRep with typeOf x, or bind the variable directly as x :: a in the top-level function. Neither of those options are available in my real code, and using them doesn't answer the question.)
The big thing is, functions are case expressions in disguise, not let expressions. case matching and let matching have different semantics. This is also why you can't match a GADT constructor that does type refinement in a let expression.
The difference is that case matches evaluate the scrutinee before continuing, whereas let matches throw a thunk onto the heap that says "do this evaluation when the result is demanded". GHC doesn't know how to preserve locally-scoped types (like a in your example) across all the potential ways laziness may interact with them, so it just doesn't try. If locally-scoped types are involved, use a case expression such that laziness can't become a problem.
As for your code, ScopedTypeVariables actually provides you a far more succinct option:
{-# Language ScopedTypeVariables, GADTs #-}
import Data.Typeable
import Data.Proxy
data Foo where
Foo :: Typeable a => a -> Foo
fooType :: Foo -> TypeRep
fooType (Foo (x :: a)) = typeRep (Proxy :: Proxy a)

Extension OverloadedString doesn't fully infer IsString. Why? Or what am I missing?

ghc 7.6.3
is quite upset for some code i'm trying to compile
the error is
No instance for (Data.String.IsString t3)
arising from the literal `"meh"'
The type variable `t3' is ambiguous
i don't understand. it's a literal. what is ambiguous? why can't it infer this as a string?
this is coming in a call like
foo bar "meh"
where foo doesn't require the second argument to be anything in particular (it must satisfy some typeclass, and it does for the particular combos it is getting.)
i'll note i can fix this error by changing the call to
foo bar ("meh" :: String)
which is clearly insane.
-- edit
maybe it has nothing to do with overloadedStrings
i can "reproduce" this error just with
data B a where
Foo :: a -> B A
then in GHCi writing simply
Foo "ok"
(clearly this fails as i'm not deriving Show, but why do i also get
No instance for (Data.String.IsString a0)
arising from the literal `"ok"'
The type variable `a0' is ambiguous
...
? what's going on here? what does this mean?)
it's a literal. what is ambiguous? why can't it infer this as a string?
When you use OverloadedStrings "meh" is not a literal String. It's a literal polymorphic value of type IsString a => a. Its type can't be inferred as String because it could also be used as a lazy ByteString, strict ByteString, Text, etc..
foo doesn't require the second argument to be anything in particular
If foo doesn't require the second argument to be anything in particular how does the type checker know the argument to foo should be a String, rather than a Text, etc.?
i'll note i can fix this error by changing the call to foo bar ("meh" :: String) which is clearly insane.
Now you are telling the type checker which specific type you want for "meh".
maybe it has nothing to do with overloadedStrings
It is exactly to do with OverloadedStrings. Personally I recommend not using OverloadedStrings and just using Data.String.fromString precisely because of the confusing behaviour you are seeing.
i can "reproduce" this error just with ... what's going on here? what does this mean?
Here's a concrete example of the ambiguity.
{-# LANGUAGE OverloadedStrings, FlexibleInstances #-}
import Data.Text
class Foo a where
foo :: a -> String
instance Foo String where
foo _ = "String"
instance Foo Text where
foo _ = "Text"
main :: IO ()
main = print (foo "meh")
What should main print? It depends on the type of "meh". What type did the user want for "meh"? With OverloadedStrings on, there's no way to know.

Why can't I use record selectors with an existentially quantified type?

When using Existential types, we have to use a pattern-matching syntax for extracting the foralled value. We can't use the ordinary record selectors as functions. GHC reports an error and suggest using pattern-matching with this definition of yALL:
{-# LANGUAGE ExistentialQuantification #-}
data ALL = forall a. Show a => ALL { theA :: a }
-- data ok
xALL :: ALL -> String
xALL (ALL a) = show a
-- pattern matching ok
-- ABOVE: heaven
-- BELOW: hell
yALL :: ALL -> String
yALL all = show $ theA all
-- record selector failed
forall.hs:11:19:
Cannot use record selector `theA' as a function due to escaped type variables
Probable fix: use pattern-matching syntax instead
In the second argument of `($)', namely `theA all'
In the expression: show $ theA all
In an equation for `yALL': yALL all = show $ theA all
Some of my data take more than 5 elements. It's hard to maintain the code if I
use pattern-matching:
func1 (BigData _ _ _ _ elemx _ _) = func2 elemx
Is there a good method to make code like that maintainable or to wrap it up so that I can use some kind of selectors?
Existential types work in a more elaborate manner than regular types. GHC is (rightly) forbidding you from using theA as a function. But imagine there was no such prohibition. What type would that function have? It would have to be something like this:
-- Not a real type signature!
theA :: ALL -> t -- for a fresh type t on each use of theA; t is an instance of Show
To put it very crudely, forall makes GHC "forget" the type of the constructor's arguments; all that the type system knows is that this type is an instance of Show. So when you try to extract the value of the constructor's argument, there is no way to recover the original type.
What GHC does, behind the scenes, is what the comment to the fake type signature above says—each time you pattern match against the ALL constructor, the variable bound to the constructor's value is assigned a unique type that's guaranteed to be different from every other type. Take for example this code:
case ALL "foo" of
ALL x -> show x
The variable x gets a unique type that is distinct from every other type in the program and cannot be matched with any type variable. These unique types are not allowed to escape to the top level—which is the reason why theA cannot be used as a function.
You can use record syntax in pattern matching,
func1 BigData{ someField = elemx } = func2 elemx
works and is much less typing for huge types.

List of existentially quantified values in Haskell

I'm wondering why this piece of code doesn't type-check:
{-# LANGUAGE ScopedTypeVariables, Rank2Types, RankNTypes #-}
{-# OPTIONS -fglasgow-exts #-}
module Main where
foo :: [forall a. a]
foo = [1]
ghc complains:
Could not deduce (Num a) from the context ()
arising from the literal `1' at exist5.hs:7:7
Given that:
Prelude> :t 1
1 :: (Num t) => t
Prelude>
it seems that the (Num t) context can't match the () context of arg. The point I can't understand is that since () is more general than (Num t), the latter should and inclusion of the former. Has this anything to do with lack of Haskell support for sub-typing?
Thank you for any comment on this.
You're not using existential quantification here. You're using rank N types.
Here [forall a. a] means that every element must have every possible type (not any, every). So [undefined, undefined] would be a valid list of that type and that's basically it.
To expand on that a bit: if a list has type [forall a. a] that means that all the elements have type forall a. a. That means that any function that takes any kind of argument, can take an element of that list as argument. This is no longer true if you put in an element which has a more specific type than forall a. a, so you can't.
To get a list which can contain any type, you need to define your own list type with existential quantification. Like so:
data MyList = Nil | forall a. Cons a MyList
foo :: MyList
foo = Cons 1 Nil
Of course unless you restrain element types to at least instantiate Show, you can't do anything with a list of that type.
First, your example doesn't even get that far with me for the current GHC, because you need to enable ImpredecativeTypes as well. Doing so results in a warning that ImpredicativeTypes will be simplified or removed in the next GHC. So we're not in good territory here. Nonetheless, adding the proper Num constraint (foo :: [forall a. Num a => a]) does allow your example to compile.
Let's leave aside impredicative types and look at a simpler example:
data Foo = Foo (forall a. a)
foo = Foo 1
This also doesn't compile with the error Could not deduce (Num a) from the context ().
Why? Well, the type promises that you're going to give the Foo constructor something with the quality that for any type a, it produces an a. The only thing that satisfies this is bottom. An integer literal, on the other hand, promises that for any type a that is of class Num it produces an a. So the types are clearly incompatible. We can however pull the forall a bit further out, to get what you probably want:
data Foo = forall a. Foo a
foo = Foo 1
So that compiles. But what can we do with it? Well, let's try to define an extractor function:
unFoo (Foo x) = x
Oops! Quantified type variable 'a' escapes. So we can define that, but we can't do much interesting with it. If we gave a class context, then we could at least use some of the class functions on it.
There is a time and place for existentials, including ones without class context, but its fairly rare, especially when you're getting started. When you do end up using them, often it will be in the context of GADTs, which are a superset of existential types, but in which the way that existentials arise feels quite natural.
Because the declaration [forall a. a] is (in meaning) the equivalent of saying, "I have a list, and if you (i.e. the computer) pick a type, I guarantee that the elements of said list will be that type."
The compiler is "calling your bluff", so-to-speak, by complaining, "I 'know' that if you give me a 1, that its type is in the Num class, but you said that I could pick any type I wanted to for that list."
Basically, you're trying to use the value of a universal type as if it were the type of a universal value. Those aren't the same thing, though.

Resources