from sklearn.ensemble import GradientBoostingRegressor
gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=1.0)
gbrt.fit(X, y)
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
X_train, X_val, y_train, y_val = train_test_split(X, y)
gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=120)
gbrt.fit(X_train, y_train)
errors = [mean_sqaured_error(y_val, y_pred)
for y_pred in gbrt.staged_predict(X_val)]
bst_n_estimators = np.argim(errors)
gbrt_best = GradientBoostingRegressor(max_depth = 2, n_estimators = bst_n_estimators)
gbrt_best.fit(X_train, y_train)
When I run this code I get the following error
ValueError: could not convert string to float: '<=50K'
I am using the following data
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
After the boosting classifier I want to check the performance boost on area under the curve, but the above error needs to be fixed first
Based on your provided code and data preview, ValueError occurs because you're feeding in the string values/categorical data to the GBM model. Recommend doing one-hot encoding (http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html) or pd.get_dummies first (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html), then fit the model.
For ROC curve, please check out: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py. The example should be fairly straightforward for what you need.
df = pd.read_csv(['PLEASE SPECIFY YOUR FILE PATH'], thousands = ',')
df.columns = ['V' + str(col) for col in df.columns]
list_cat = ['V1', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V13', 'V14']
list_target = ['V0']
df = pd.get_dummies(df, columns = list_cat, drop_first = True)
X = df.loc[:, df.columns != list_target[0]].values
y = df[list_target].values
print(df.shape)
df.head()
import numpy as np
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=1.0)
gbrt.fit(X, y)
Related
I am using XGboost for a binary prediction problem. I tested my model with several features and had some good results.
After adding one feature to the model and calculating the feature importance. The importance of this feature showed to be very high and far superior to other features.
However, when testing the model the test score drops considerably.
Is there an explanation for this kind of behaviour ?
There are at least a few ways to run feature importance experiments.
# Let's load the packages
import numpy as np
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.inspection import permutation_importance
import shap
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.figsize': (12.0, 8.0)})
plt.rcParams.update({'font.size': 14})
boston = load_boston()
X = pd.DataFrame(boston.data, columns=boston.feature_names)
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=12)
rf = RandomForestRegressor(n_estimators=100)
rf.fit(X_train, y_train)
# 1
rf.feature_importances_
plt.barh(boston.feature_names, rf.feature_importances_)
sorted_idx = rf.feature_importances_.argsort()
plt.barh(boston.feature_names[sorted_idx], rf.feature_importances_[sorted_idx])
plt.xlabel("Random Forest Feature Importance")
# 2
perm_importance = permutation_importance(rf, X_test, y_test)
sorted_idx = perm_importance.importances_mean.argsort()
plt.barh(boston.feature_names[sorted_idx], perm_importance.importances_mean[sorted_idx])
plt.xlabel("Permutation Importance")
# 3
explainer = shap.TreeExplainer(rf)
shap_values = explainer.shap_values(X_test)
shap.summary_plot(shap_values, X_test, plot_type="bar")
Also, you can certainly add more data into your model. Models, almost without exception, produce more accurate results when they 'see' more data. Finally, you can always test other models on your dataset and see how they perform. Today at work I tested an XGboost model and a RandomForestRegressor model. I expected the former to perform better, but the latter actually performed much better. It's almost impossible to guess which model will perform better over any given dataset, you have to try multiple models, check the predictive capabilities of each, and pick the one (or maybe two) that performs the best. Having said that, you can try something like this.
import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn import cluster, datasets
from sklearn.neighbors import kneighbors_graph
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
np.random.seed(0)
pd.set_option('display.max_columns', 500)
#df = pd.read_csv('C:\\your_path_here\\test.csv')
#print('done!')
#df = df[:10000]
#df = df.fillna(0)
#df = df.dropna()
X = df[['RatingScore',
'Par',
'Term',
'TimeToMaturity',
'LRMScore',
'Coupon',
'Price']]
#select your target variable
y = df[['Spread']]
#train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
colors = np.array([x for x in 'bgrcmykbgrcmykbgrcmykbgrcmyk'])
colors = np.hstack([colors] * 20)
clustering_names = [
'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift',
'SpectralClustering', 'Ward', 'AgglomerativeClustering',
'DBSCAN', 'Birch']
plt.figure(figsize=(len(clustering_names) * 2 + 3, 9.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,
hspace=.01)
plot_num = 1
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
# normalize dataset for easier parameter selection
X = StandardScaler().fit_transform(X)
# estimate bandwidth for mean shift
bandwidth = cluster.estimate_bandwidth(X, quantile=0.3)
# connectivity matrix for structured Ward
connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)
# make connectivity symmetric
connectivity = 0.5 * (connectivity + connectivity.T)
# create clustering estimators
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)
two_means = cluster.MiniBatchKMeans(n_clusters=2)
ward = cluster.AgglomerativeClustering(n_clusters=2, linkage='ward',
connectivity=connectivity)
spectral = cluster.SpectralClustering(n_clusters=2,
eigen_solver='arpack',
affinity="nearest_neighbors")
dbscan = cluster.DBSCAN(eps=.2)
affinity_propagation = cluster.AffinityPropagation(damping=.9,
preference=-200)
average_linkage = cluster.AgglomerativeClustering(
linkage="average", affinity="cityblock", n_clusters=2,
connectivity=connectivity)
birch = cluster.Birch(n_clusters=2)
clustering_algorithms = [
two_means, affinity_propagation, ms, spectral, ward, average_linkage,
dbscan, birch]
for name, algorithm in zip(clustering_names, clustering_algorithms):
# predict cluster memberships
t0 = time.time()
algorithm.fit(X)
t1 = time.time()
if hasattr(algorithm, 'labels_'):
y_pred = algorithm.labels_.astype(np.int)
else:
y_pred = algorithm.predict(X)
# plot
plt.subplot(4, len(clustering_algorithms), plot_num)
if i_dataset == 0:
plt.title(name, size=18)
plt.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10)
if hasattr(algorithm, 'cluster_centers_'):
centers = algorithm.cluster_centers_
center_colors = colors[:len(centers)]
plt.scatter(centers[:, 0], centers[:, 1], s=100, c=center_colors)
plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.xticks(())
plt.yticks(())
plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),
transform=plt.gca().transAxes, size=15,
horizontalalignment='right')
plot_num += 1
plt.show()
Finally, consider looping through several regression, or classification, models in one go, and getting the results for each.
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
from sklearn import linear_model
import statsmodels.api as sm
X = X
y = y
# Note the difference in argument order
model = sm.OLS(y, X).fit()
predictions = model.predict(X) # make the predictions by the model
# Print out the statistics
model.summary()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import SGDRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import TweedieRegressor
from sklearn.linear_model import PoissonRegressor
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.svm import LinearSVR
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
regressors = [
LinearRegression(),
SGDRegressor(),
KNeighborsRegressor(),
DecisionTreeRegressor(),
RandomForestRegressor(),
GradientBoostingRegressor(),
TweedieRegressor(),
PoissonRegressor(),
Ridge(),
Lasso()
]
import pandas as pd
# Logging for Visual Comparison
log_cols=["Regressor", "RMSE", "MAE"]
log = pd.DataFrame(columns=log_cols)
for reg in regressors:
reg.fit(X_train, y_train)
name = reg.__class__.__name__
print(reg.score(X_test, y_test))
y_pred = reg.predict(X_test)
lr_mse = mean_squared_error(y_pred, y_test)
lr_rmse = np.sqrt(lr_mse)
print(name + ' RMSE: %.4f' % lr_rmse)
lin_mae = mean_absolute_error(y_pred, y_test)
print(name + ' MAE: %.4f' % lin_mae)
log_entry = pd.DataFrame([[name, lr_rmse, lin_mae]], columns=log_cols)
log = log.append(log_entry)
print("="*30)
import seaborn as sns
import matplotlib as plt
sns.set_color_codes("muted")
sns.barplot(x='RMSE', y='Regressor', data=log, color="b")
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, log_loss
from sklearn.neighbors import KNeighborsClassifier
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.svm import SVC
from sklearn.datasets import load_iris
iris = load_iris()
iris
# Step 2: Separating the data into dependent and independent variables
X = iris.data[:, :2] # we only take the first two features.
y = iris.target
# Step 3: Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
classifiers = [
GaussianNB(),
MLPClassifier(),
KNeighborsClassifier(),
GaussianProcessClassifier(),
DecisionTreeClassifier(),
RandomForestClassifier(),
AdaBoostClassifier(),
GradientBoostingClassifier(),
QuadraticDiscriminantAnalysis()]
import pandas as pd
# Logging for Visual Comparison
log_cols=["Classifier", "Accuracy"]
log = pd.DataFrame(columns=log_cols)
for clf in classifiers:
clf.fit(X_train, y_train)
name = clf.__class__.__name__
print("="*30)
print(name)
print('****Results****')
train_predictions = clf.predict(X_test)
acc = accuracy_score(y_test, train_predictions)
print("Accuracy: {:.4%}".format(acc))
log_entry = pd.DataFrame([[name, acc*100]], columns=log_cols)
log = log.append(log_entry)
print("="*30)
import seaborn as sns
import matplotlib as plt
sns.set_color_codes("muted")
sns.barplot(x='Accuracy', y='Classifier', data=log, color="b")
I am performing gridsearchcv on ridgeclassifiercv to obtain hyper-parameters for my model.
So i imported the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn import linear_model
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
import warnings
warnings.filterwarnings('ignore')
np.random.seed(27)
Then i imported the dataset and split, scaled and label encoded the target variable
!wget -O ChurnData.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/ChurnData.csv
churn = pd.read_csv("ChurnData.csv")
X = churn.drop(['churn'], axis='columns')
y1 = churn[['churn']]
y1['churn']=y1['churn'].astype('int')
scaler=StandardScaler()
X_scaled=scaler.fit_transform(X)
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(churn['churn'].unique())
y = le.transform(y1)
# split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size = 0.2)
Then i performed gridsearchcv
alphas = [(0.1, 1, 2, 5 , 10)]
solver_churn = ['auto', 'svd','cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga']
fit_intercept = [True, False]
class_weight = [{0:0.5,1:0.5},{0:0.6,1:0.4}]
param_grid_churn = dict(alphas=alphas, fit_intercept=fit_intercept,class_weight=class_weight)
ridgecv = linear_model.RidgeClassifierCV()
grids_churn = GridSearchCV(estimator=ridgecv, param_grid=param_grid_churn, scoring='roc_auc', verbose=1, n_jobs=-1)
grid_result_churn = grids_churn.fit(X_train, y_train)
alphas is given in docs as a parameter still i get
Error in Grid search CV - RidgeClassifierCV as the constructor either does not set or modifies parameter alphas
How to resolve this?
Adjust your code like this:
alphas = (0.1, 1, 2, 5 , 10)
solver_churn = ['auto', 'svd','cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga']
fit_intercept = [True, False]
class_weight = [{0:0.5,1:0.5},{0:0.6,1:0.4}]
param_grid_churn = dict(fit_intercept=fit_intercept,class_weight=class_weight)
ridgecv = linear_model.RidgeClassifierCV(alphas=alphas)
grids_churn = GridSearchCV(estimator=ridgecv, param_grid=param_grid_churn, scoring='roc_auc', verbose=1, n_jobs=-1)
grid_result_churn = grids_churn.fit(X_train, y_train)
I'm doing the "Hello world" in machine learning, using the Iris dataset. I already have an acceptable result for the entry of this model, I am using 80% of the information to train it and the remaining 20% to do the validation. I am using 6 prediction algorithms, which work well.
but I have a problem, how can I insert new information so that it is analyzed? How do I insert the characteristics of a flower and tell me the type of iris it is? Either: Iris-setosa, Iris-versicolor or Iris-virginica?
# Load libraries
import pandas
from pandas.plotting import scatter_matrix
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
# Load dataset
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = pandas.read_csv(url, names=names)
#######Evaluate Some Algorithms########
#Create a Validation Dataset
# Split-out validation dataset
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size=validation_size, random_state=seed)
########Build Models########
# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression(solver='liblinear', multi_class='ovr')))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))
# evaluate each model in turn
results = []
names = []
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
########Make Predictions########
print('######## Make Predictions ########')
# Make predictions on validation dataset
knn = KNeighborsClassifier()
knn.fit(X_train, Y_train)
predictions = knn.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
I think you can follow this other post to save your model, and after you can load him and pass new data and make some predictions.
Remember to set the data to same input shape as used during training.
import cPickle
# save the classifier
with open('my_dumped_classifier.pkl', 'wb') as fid:
cPickle.dump(gnb, fid)
# load it again
with open('my_dumped_classifier.pkl', 'rb') as fid:
gnb_loaded = cPickle.load(fid)
# make predictions
Xtrain,Xtest,Ytrain,Ytest = train_test_split(X,Y,test_size=0.2, random_state = 10)
You have to preprocess data before feeding your model. Here is a complete working example. First, let's import the required modules:
from datetime import datetime
import numpy as np
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, FunctionTransformer
Then, define the training data:
X = ['17:00','17:05', '17:10', '17:15', '17:20', '17:25']
X = np.array(X).reshape(-1, 1)
y = [1, 0, 1, 1, 0, 1]
Note, the X must be 2D array. Also, you have to convert time string values to the numerical format. One way to do it is to convert strings to timestamp using the builtin datetime module. Here is a function which will be used to transform the data:
def transform(X, y=None):
X_new = np.apply_along_axis(
lambda x: [datetime.strptime(x[0], '%H:%M').timestamp()],
axis=1,
arr=X)
return X_new
Don't forget to scale your data since SVC models require data normalization. One can easily combine all the preprocessing steps using the Pipeline:
pipeline = Pipeline(steps=[
('transformer', FunctionTransformer(transform, validate=False)),
('scaler', MinMaxScaler()),
('predictor', SVC(kernel='linear'))
])
Finally, let's fit the model:
print('Build and fit a model...')
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
pipeline.fit(X_train, y_train)
score = pipeline.score(X_test, y_test)
print('Done. Score', score)
import math
import numpy as np
import pandas as pd
#from pandas import DataFrame
from sklearn import preprocessing,cross_validation
from sklearn.linear_model import LogisticRegression
#from sklearn.cross_validation import train_test_split
from numpy import loadtxt, where
from pylab import scatter, show, legend, xlabel, ylabel
# scale larger positive and values to between -1,1 depending on the largest
# value in the data
min_max_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))
df = pd.read_excel("Cryotherapy.xlsx", header=0)
# clean up data
df.columns = ["sex","age","Time","Number_of_Warts", "Type",
"Area","Result_of_Treatment"]
x = df["Result_of_Treatment"]
X = df[["Type","Area",]]
X = np.array(X)
X = min_max_scaler.fit_transform(X)
Y = df["Result_of_Treatment"]
Y = np.array(Y)
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y,
test_size=0.4)
# train scikit learn model
clf = LogisticRegression()
clf.fit(X_train, Y_train)
accuracy = clf.score(X_test,Y_test)
print(accuracy)
Try passing a random_state into the train_test_split function. If you do not do this then the data is gonna be shuffled randomly each time -> producing different train and test sets.
Example:
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.4, random_state=1)