If I have a dataframe created as follows:
df = spark.table("tblName")
Is there anyway that I can get back tblName from df?
You can extract it from the plan:
df.logicalPlan().argString().replace("`","")
We can extract tablename from a dataframe by parsing unresolved logical plan.
Please follow the method below:
def getTableName(df: DataFrame): String = {
Seq(df.queryExecution.logical, df.queryExecution.optimizedPlan).flatMap{_.collect{
case LogicalRelation(_, _, catalogTable: Option[CatalogTable], _) =>
if (catalogTable.isDefined) {
Some(catalogTable.get.identifier.toString())
} else None
case hive: HiveTableRelation => Some(hive.tableMeta.identifier.toString())
}
}.flatten.head
}
scala> val df = spark.table("db.table")
scala> getTableName(df)
res: String = `db`.`table`
Following utility function may be helpful to determine the table name from given DataFrame.
def get_dataframe_tablename(df: pyspark.sql.DataFrame) -> typing.Optional[str]:
"""
If the dataframe was created from an underlying table (e.g. spark.table('dual') or
spark.sql("select * from dual"), this function will return the
fully qualified table name (e.g. `default`.`dual`) as output otherwise it will return None.
Test on: python 3.7, spark 3.0.1, but it should work with Spark >=2.x and python >=3.4 too
Examples:
>>> get_dataframe_tablename(spark.table('dual'))
`default`.`dual`
>>> get_dataframe_tablename(spark.sql("select * from dual"))
`default`.`dual`
It inspects the output of `df.explain()` to determine that the df was created from a table or not
:param df: input dataframe whose underlying table name will be return
:return: table name or None
"""
def _explain(_df: pyspark.sql.DataFrame) -> str:
# df.explain() does not take parameter to accept the out and dump the output on stdout
# by default
import contextlib
import io
with contextlib.redirect_stdout(io.StringIO()) as f:
_df.explain()
f.seek(0) # Rewind stream position
explanation = f.readlines()[1] # Ignore first output line(#Physical Plan...)
return explanation
pattern = re.compile("Scan hive (.+), HiveTableRelation (.+?), (.+)")
output = _explain(df)
match = pattern.search(output)
return match.group(2) if match else None
Below three line of code will give table and database name
import org.apache.spark.sql.execution.FileSourceScanExec
df=session.table("dealer")
df.queryExecution.sparkPlan.asInstanceOf[FileSourceScanExec].tableIdentifier
Any answer on this one yet? I found a way but it's probably not the prettiest. You can access the tablename by retrieving the physical execution plan and then doing some string splitting magic on it.
Let's say you have a table from database_name.tblName. The following should work:
execution_plan = df.__jdf.queryExecution().simpleString()
table_name = string.split('FileScan')[1].split('[')[0].split('.')[1]
The first line will return your execution plan in a string format. That will look similar to this:
== Physical Plan ==\n*(1) ColumnarToRow\n+- FileScan parquet database_name.tblName[column1#2880,column2ban#2881] Batched: true, DataFilters: [], Format: Parquet, Location: PreparedDeltaFileIndex[dbfs:/mnt/lake/database_name/table_name], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<column1:string,column2:string...\n\n'
After that you can run some string splitting to access the relevant information. The first string split gets you all the elements of FileScan- you are interested in the second element, then before and after the [- here the first element is of interest. The second string split after . will return tblName
You can create table from df. But if table is a local temporary view or a global temporary view you should drop it (sqlContext.dropTempTable) before create a table with same name or use create or replace function (spark.createOrReplaceGlobalTempView or spark.createOrReplaceTempView). If table is temp table you can create table with same name without error
#Create data frame
>>> d = [('Alice', 1)]
>>> test_df = spark.createDataFrame(sc.parallelize(d), ['name','age'])
>>> test_df.show()
+-----+---+
| name|age|
+-----+---+
|Alice| 1|
+-----+---+
#create tables
>>> test_df.createTempView("tbl1")
>>> test_df.registerTempTable("tbl2")
>>> sqlContext.tables().show()
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
| | tbl1| true|
| | tbl2| true|
+--------+---------+-----------+
#create data frame from tbl1
>>> df = spark.table("tbl1")
>>> df.show()
+-----+---+
| name|age|
+-----+---+
|Alice| 1|
+-----+---+
#create tbl1 again with using df data frame. It will get error
>>> df.createTempView("tbl1")
raise AnalysisException(s.split(': ', 1)[1], stackTrace)
pyspark.sql.utils.AnalysisException: "Temporary view 'tbl1' already exists;"
#drop and create again
>>> sqlContext.dropTempTable('tbl1')
>>> df.createTempView("tbl1")
>>> spark.sql('select * from tbl1').show()
+-----+---+
| name|age|
+-----+---+
|Alice| 1|
+-----+---+
#create data frame from tbl2 and replace name value
>>> df = spark.table("tbl2")
>>> df = df.replace('Alice', 'Bob')
>>> df.show()
+----+---+
|name|age|
+----+---+
| Bob| 1|
+----+---+
#create tbl2 again with using df data frame
>>> df.registerTempTable("tbl2")
>>> spark.sql('select * from tbl2').show()
+----+---+
|name|age|
+----+---+
| Bob| 1|
+----+---+
Related
I have a data frame that looks like this (one column named "value" with a JSON string in it). I send it to an Event Hub using Kafka API and then I want to read that data from the Event Hub and apply some transformations to it. The data is in received in binary format, as described in the Kafka documentation.
Here are a few columns in CSV format:
value
"{""id"":""e52f247c-f46c-4021-bc62-e28e56db1ad8"",""latitude"":""34.5016064725731"",""longitude"":""123.43996453687777""}"
"{""id"":""32782100-9b59-49c7-9d56-bb4dfc368a86"",""latitude"":""49.938541626415144"",""longitude"":""111.88360885971986""}"
"{""id"":""a72a600f-2b99-4c41-a388-9a24c00545c0"",""latitude"":""4.988768300413497"",""longitude"":""-141.92727675177588""}"
"{""id"":""5a5f056a-cdfd-4957-8e84-4d5271253509"",""latitude"":""41.802942545247134"",""longitude"":""90.45164573613573""}"
"{""id"":""d00d0926-46eb-45dd-9e35-ab765804340d"",""latitude"":""70.60161063520081"",""longitude"":""20.566520665122482""}"
"{""id"":""dda14397-6922-4bb6-9be3-a1546f08169d"",""latitude"":""68.400462882435"",""longitude"":""135.7167027587489""}"
"{""id"":""c7f13b8a-3468-4bc6-9db4-e0b1b34bf9ea"",""latitude"":""26.04757722355835"",""longitude"":""175.20227554031783""}"
"{""id"":""97f8f1cf-3aa0-49bb-b3d5-05b736e0c883"",""latitude"":""35.52624182094499"",""longitude"":""-164.18066699972852""}"
"{""id"":""6bed49bc-ee93-4ed9-893f-4f51c7b7f703"",""latitude"":""-24.319581484353847"",""longitude"":""85.27338980948076""}"
What I want to do is to apply a transformation and create a data frame with 3 columns one with id, one with latitude and one with longitude.
This is what I tried but the result is not what I expected:
from pyspark.sql.types import StructType
from pyspark.sql.functions import from_json
from pyspark.sql import functions as F
# df is the data frame received from Kafka
location_schema = StructType().add("id", "string").add("latitude", "float").add("longitude", "float")
string_df = df.selectExpr("CAST(value AS STRING)").withColumn("value", from_json(F.col("value"), location_schema))
string_df.printSchema()
string_df.show()
And this is the result:
It created a "value" column with a structure as a value. Any idea what to do to obtain 3 different columns, as I described?
Your df:
df = spark.createDataFrame(
[
(1, '{"id":"e52f247c-f46c-4021-bc62-e28e56db1ad8","latitude":"34.5016064725731","longitude":"123.43996453687777"}'),
(2, '{"id":"32782100-9b59-49c7-9d56-bb4dfc368a86","latitude":"49.938541626415144","longitude":"111.88360885971986"}'),
(3, '{"id":"a72a600f-2b99-4c41-a388-9a24c00545c0","latitude":"4.988768300413497","longitude":"-141.92727675177588"}'),
(4, '{"id":"5a5f056a-cdfd-4957-8e84-4d5271253509","latitude":"41.802942545247134","longitude":"90.45164573613573"}'),
(5, '{"id":"d00d0926-46eb-45dd-9e35-ab765804340d","latitude":"70.60161063520081","longitude":"20.566520665122482"}'),
(6, '{"id":"dda14397-6922-4bb6-9be3-a1546f08169d","latitude":"68.400462882435","longitude":"135.7167027587489"}'),
(7, '{"id":"c7f13b8a-3468-4bc6-9db4-e0b1b34bf9ea","latitude":"26.04757722355835","longitude":"175.20227554031783"}'),
(8, '{"id":"97f8f1cf-3aa0-49bb-b3d5-05b736e0c883","latitude":"35.52624182094499","longitude":"-164.18066699972852"}'),
(9, '{"id":"6bed49bc-ee93-4ed9-893f-4f51c7b7f703","latitude":"-24.319581484353847","longitude":"85.27338980948076"}')
],
['id', 'value']
).drop('id')
+--------------------------------------------------------------------------------------------------------------+
|value |
+--------------------------------------------------------------------------------------------------------------+
|{"id":"e52f247c-f46c-4021-bc62-e28e56db1ad8","latitude":"34.5016064725731","longitude":"123.43996453687777"} |
|{"id":"32782100-9b59-49c7-9d56-bb4dfc368a86","latitude":"49.938541626415144","longitude":"111.88360885971986"}|
|{"id":"a72a600f-2b99-4c41-a388-9a24c00545c0","latitude":"4.988768300413497","longitude":"-141.92727675177588"}|
|{"id":"5a5f056a-cdfd-4957-8e84-4d5271253509","latitude":"41.802942545247134","longitude":"90.45164573613573"} |
|{"id":"d00d0926-46eb-45dd-9e35-ab765804340d","latitude":"70.60161063520081","longitude":"20.566520665122482"} |
|{"id":"dda14397-6922-4bb6-9be3-a1546f08169d","latitude":"68.400462882435","longitude":"135.7167027587489"} |
|{"id":"c7f13b8a-3468-4bc6-9db4-e0b1b34bf9ea","latitude":"26.04757722355835","longitude":"175.20227554031783"} |
|{"id":"97f8f1cf-3aa0-49bb-b3d5-05b736e0c883","latitude":"35.52624182094499","longitude":"-164.18066699972852"}|
|{"id":"6bed49bc-ee93-4ed9-893f-4f51c7b7f703","latitude":"-24.319581484353847","longitude":"85.27338980948076"}|
+--------------------------------------------------------------------------------------------------------------+
Then:
from pyspark.sql import functions as F
from pyspark.sql.types import *
json_schema = StructType([
StructField("id", StringType(), True),
StructField("latitude", FloatType(), True),
StructField("longitude", FloatType(), True)
])
df\
.withColumn('json', F.from_json(F.col('value'), json_schema))\
.select(F.col('json').getItem('id').alias('id'),
F.col('json').getItem('latitude').alias('latitude'),
F.col('json').getItem('longitude').alias('longitude')
)\
.show(truncate=False)
+------------------------------------+-------------------+-------------------+
|id |latitude |longitude |
+------------------------------------+-------------------+-------------------+
|e52f247c-f46c-4021-bc62-e28e56db1ad8|34.5016064725731 |123.43996453687777 |
|32782100-9b59-49c7-9d56-bb4dfc368a86|49.938541626415144 |111.88360885971986 |
|a72a600f-2b99-4c41-a388-9a24c00545c0|4.988768300413497 |-141.92727675177588|
|5a5f056a-cdfd-4957-8e84-4d5271253509|41.802942545247134 |90.45164573613573 |
|d00d0926-46eb-45dd-9e35-ab765804340d|70.60161063520081 |20.566520665122482 |
|dda14397-6922-4bb6-9be3-a1546f08169d|68.400462882435 |135.7167027587489 |
|c7f13b8a-3468-4bc6-9db4-e0b1b34bf9ea|26.04757722355835 |175.20227554031783 |
|97f8f1cf-3aa0-49bb-b3d5-05b736e0c883|35.52624182094499 |-164.18066699972852|
|6bed49bc-ee93-4ed9-893f-4f51c7b7f703|-24.319581484353847|85.27338980948076 |
+------------------------------------+-------------------+-------------------+
If pattern remains unchanged then you can use regexp_replace()
>>> df = spark.read.option("header",False).option("inferSchema",True).csv("/dir1/dir2/Sample2.csv")
>>> df.show(truncate=False)
+-------------------------------------------------+------------------------------------+---------------------------------------+
|_c0 |_c1 |_c2 |
+-------------------------------------------------+------------------------------------+---------------------------------------+
|"{""id"":""e52f247c-f46c-4021-bc62-e28e56db1ad8""|""latitude"":""34.5016064725731"" |""longitude"":""123.43996453687777""}" |
|"{""id"":""32782100-9b59-49c7-9d56-bb4dfc368a86""|""latitude"":""49.938541626415144"" |""longitude"":""111.88360885971986""}" |
|"{""id"":""a72a600f-2b99-4c41-a388-9a24c00545c0""|""latitude"":""4.988768300413497"" |""longitude"":""-141.92727675177588""}"|
|"{""id"":""5a5f056a-cdfd-4957-8e84-4d5271253509""|""latitude"":""41.802942545247134"" |""longitude"":""90.45164573613573""}" |
|"{""id"":""d00d0926-46eb-45dd-9e35-ab765804340d""|""latitude"":""70.60161063520081"" |""longitude"":""20.566520665122482""}" |
|"{""id"":""dda14397-6922-4bb6-9be3-a1546f08169d""|""latitude"":""68.400462882435"" |""longitude"":""135.7167027587489""}" |
|"{""id"":""c7f13b8a-3468-4bc6-9db4-e0b1b34bf9ea""|""latitude"":""26.04757722355835"" |""longitude"":""175.20227554031783""}" |
|"{""id"":""97f8f1cf-3aa0-49bb-b3d5-05b736e0c883""|""latitude"":""35.52624182094499"" |""longitude"":""-164.18066699972852""}"|
|"{""id"":""6bed49bc-ee93-4ed9-893f-4f51c7b7f703""|""latitude"":""-24.319581484353847""|""longitude"":""85.27338980948076""}" |
+-------------------------------------------------+------------------------------------+---------------------------------------+
>>> df.withColumn("id",regexp_replace('_c0','\"\{\"\"id\"\":\"\"','')).withColumn("id",regexp_replace('id','\"\"','')).withColumn("latitude",regexp_replace('_c1','\"\"latitude\"\":\"\"','')).withColumn("latitude",regexp_replace('latitude','\"\"','')).withColumn("longitude",regexp_replace('_c2','\"\"longitude\"\":\"\"','')).withColumn("longitude",regexp_replace('longitude','\"\"\}\"','')).drop("_c0").drop("_c1").drop("_c2").show()
+--------------------+-------------------+-------------------+
| id| latitude| longitude|
+--------------------+-------------------+-------------------+
|e52f247c-f46c-402...| 34.5016064725731| 123.43996453687777|
|32782100-9b59-49c...| 49.938541626415144| 111.88360885971986|
|a72a600f-2b99-4c4...| 4.988768300413497|-141.92727675177588|
|5a5f056a-cdfd-495...| 41.802942545247134| 90.45164573613573|
|d00d0926-46eb-45d...| 70.60161063520081| 20.566520665122482|
|dda14397-6922-4bb...| 68.400462882435| 135.7167027587489|
|c7f13b8a-3468-4bc...| 26.04757722355835| 175.20227554031783|
|97f8f1cf-3aa0-49b...| 35.52624182094499|-164.18066699972852|
|6bed49bc-ee93-4ed...|-24.319581484353847| 85.27338980948076|
+--------------------+-------------------+-------------------+
You can use json_tuple to extract values from JSON string.
Input:
from pyspark.sql import functions as F
df = spark.createDataFrame(
[('{"id":"e52f247c-f46c-4021-bc62-e28e56db1ad8","latitude":"34.5016064725731","longitude":"123.43996453687777"}',)],
['value'])
Script:
cols = ['id', 'latitude', 'longitude']
df = df.select(F.json_tuple('value', *cols)).toDF(*cols)
df.show(truncate=0)
# +------------------------------------+----------------+------------------+
# |id |latitude |longitude |
# +------------------------------------+----------------+------------------+
# |e52f247c-f46c-4021-bc62-e28e56db1ad8|34.5016064725731|123.43996453687777|
# +------------------------------------+----------------+------------------+
If needed, cast to double:
.withColumn('latitude', F.col('latitude').cast('double'))
.withColumn('longitude', F.col('longitude').cast('double'))
It's easy to extract JSON string as columns using inline and from_json
df = spark.createDataFrame(
[('{"id":"e52f247c-f46c-4021-bc62-e28e56db1ad8","latitude":"34.5016064725731","longitude":"123.43996453687777"}',)],
['value'])
df = df.selectExpr(
"inline(array(from_json(value, 'struct<id:string, latitude:string, longitude:string>')))"
)
df.show(truncate=0)
# +------------------------------------+----------------+------------------+
# |id |latitude |longitude |
# +------------------------------------+----------------+------------------+
# |e52f247c-f46c-4021-bc62-e28e56db1ad8|34.5016064725731|123.43996453687777|
# +------------------------------------+----------------+------------------+
I used the sample data provided, created a dataframe called df and proceeded to use the same method as you.
The following is the image of the rows present inside df dataframe.
The fields are not displayed as required because of the their datatype. The values for latitude and longitude are present as string types in the dataframe df. But while creating the schema location_schema you have specified their type as float. Instead, try changing their type to string and later convert them to double type. The code looks as shown below:
location_schema = StructType().add("id", "string").add("latitude", "string").add("longitude", "string")
string_df = df.selectExpr('CAST(value AS STRING)').withColumn("value", from_json(F.col("value"), location_schema))
string_df.printSchema()
string_df.show(truncate=False)
Now using DataFrame.withColumn(), Column.withField() and cast() convert the string type fields latitude and longitude to Double Type.
string_df = string_df.withColumn("value", col("value").withField("latitude", col("value.latitude").cast(DoubleType())))\
.withColumn("value", col("value").withField("longitude", col("value.longitude").cast(DoubleType())))
string_df.printSchema()
string_df.show(truncate=False)
So, you can get the desired output as shown below.
Update:
To get separate columns you can simply use json_tuple() method. Refer to this official spark documentation:
pyspark.sql.functions.json_tuple — PySpark 3.3.0 documentation (apache.org)
Input File:
32535
1243
1q332|2
EOH
CUST_ID|CUST_NAME|ORDER_NO|ORDER_ITEM
1|TAM|222|ORANGE
2|AAM|322|APPLE
output
CUST_ID|CUST_NAME|ORDER_NO|ORDER_ITEM
1|TAM|222|ORANGE
2|AAM|322|APPLE
Mentioned above the input and output. I want to read input file, if found 'EOH' word in input file and convert to Dataframe from next line. Before 'EOH' rows should be ignored. Output format is given above.
sometime few rows may be added before 'EOH'.Need to pickup based on 'EOH' word.
Please share Pyspark code.
I don't know if this is the best approach, but here is:
from pyspark.sql.window import Window
import pyspark.sql.functions as f
df = (spark
.read
.format('csv')
.option('delimiter', '|')
.schema('CUST_ID string, CUST_NAME string, ORDER_NO integer, ORDER_ITEM STRING')
.load(YOUR_PATH))
# Identifying which line is the header
df = (df
.withColumn('id', f.monotonically_increasing_id())
.withColumn('header', f.lag('CUST_ID', default=False).over(Window.orderBy('id')) == f.lit('EOH')))
# Collecting only header row to python context
header = df.where(f.col('header')).head()
# Removing all rows before header
df = (df
.where(f.col('id') > f.lit(header.id))
.drop('id', 'header'))
df.show()
Output:
+-------+---------+--------+----------+
|CUST_ID|CUST_NAME|ORDER_NO|ORDER_ITEM|
+-------+---------+--------+----------+
| 1| TAM| 222| ORANGE|
| 2| AAM| 322| APPLE|
+-------+---------+--------+----------+
If the schema is fixed as in the comment, you can pass them into from_csv
schema = """
CUST_ID INT,
CUST_NAME STRING,
ORDER_NO INT,
ORDER_ITEM STRING
"""
# if you know for sure all fields are not null then
(df
.withColumn('value', F.from_csv('value', schema, {'sep': '|'}))
.select('value.*')
.where(
F.col('CUST_ID').isNotNull() &
F.col('CUST_NAME').isNotNull() &
F.col('ORDER_NO').isNotNull() &
F.col('ORDER_ITEM').isNotNull()
)
.show(10, False)
)
# if you unsure about the nulls, you can filter them before processing (or there are many other options)
(df
.withColumn('tmp', F.size(F.split('value', '\|')))
.where((F.col('tmp') == 4) & (~F.col('value').startswith('CUST_ID')))
.withColumn('value', F.from_csv('value', schema, {'sep': '|'}))
.select('value.*')
.show(10, False)
)
# +-------+---------+--------+----------+
# |CUST_ID|CUST_NAME|ORDER_NO|ORDER_ITEM|
# +-------+---------+--------+----------+
# |1 |TAM |222 |ORANGE |
# |2 |AAM |322 |APPLE |
# +-------+---------+--------+----------+
I'm trying to merge three RDD's based on the same key. The following is the data.
+------+---------+-----+
|UserID|UserLabel|Total|
+------+---------+-----+
| 2| Panda| 15|
| 3| Candy| 15|
| 1| Bahroze| 15|
+------+---------+-----+
+------+---------+-----+
|UserID|UserLabel|Total|
+------+---------+-----+
| 2| Panda| 7342|
| 3| Candy| 5669|
| 1| Bahroze| 8361|
+------+---------+-----+
+------+---------+-----+
|UserID|UserLabel|Total|
+------+---------+-----+
| 2| Panda| 37|
| 3| Candy| 27|
| 1| Bahroze| 39|
+------+---------+-----+
I'm able to merge these three DF. I converted them to RDD dict with the following code for all three
new_rdd = userTotalVisits.rdd.map(lambda row: row.asDict(True))
After RDD conversion, I'm taking one RDD and the other two as lists. Mapping the first RDD and then adding other keys to it based on the same UserID. I was hoping there was a better way of doing this using pyspark. Here's the code I've written.
def transform(row):
# Add a new key to each row
for x in conversion_list: # first rdd in list of object as[{}] after using collect()
if( x['UserID'] == row['UserID'] ):
row["Total"] = { "Visitors": row["Total"], "Conversions": x["Total"] }
for y in Revenue_list: # second rdd in list of object as[{}] after using collect()
if( y['UserID'] == row['UserID'] ):
row["Total"]["Revenue"] = y["Total"]
return row
potato = new_rdd.map(lambda row: transform(row)) #first rdd
How should I efficiently merge these three RDDs/DFs? (because I had to perform three different task on a huge DF). Looking for a better efficient idea. PS I'm still spark newbie. The result of my code does is as follows which is what I need.
{'UserID': '2', 'UserLabel': 'Panda', 'Total': {'Visitors': 37, 'Conversions': 15, 'Revenue': 7342}}
{'UserID': '3', 'UserLabel': 'Candy', 'Total': {'Visitors': 27, 'Conversions': 15, 'Revenue': 5669}}
{'UserID': '1', 'UserLabel': 'Bahroze', 'Total': {'Visitors': 39, 'Conversions': 15, 'Revenue': 8361}}
Thank you.
You can join the 3 dataframes on columns ["UserID", "UserLabel"], create a new struct total from the 3 total columns:
from pyspark.sql import functions as F
result = df1.alias("conv") \
.join(df2.alias("rev"), ["UserID", "UserLabel"], "left") \
.join(df3.alias("visit"), ["UserID", "UserLabel"], "left") \
.select(
F.col("UserID"),
F.col("UserLabel"),
F.struct(
F.col("conv.Total").alias("Conversions"),
F.col("rev.Total").alias("Revenue"),
F.col("visit.Total").alias("Visitors")
).alias("Total")
)
# write into json file
result.write.json("output")
# print result:
for i in result.toJSON().collect():
print(i)
# {"UserID":3,"UserLabel":"Candy","Total":{"Conversions":15,"Revenue":5669,"Visitors":27}}
# {"UserID":1,"UserLabel":"Bahroze","Total":{"Conversions":15,"Revenue":8361,"Visitors":39}}
# {"UserID":2,"UserLabel":"Panda","Total":{"Conversions":15,"Revenue":7342,"Visitors":37}}
You can just do the left joins on all the three dataframes but make sure the first dataframe that you use has all the UserID and UserLabel Values. You can ignore the GroupBy operation as suggested by #blackbishop and still it would give you the required output
I am showing how it can be done in scala but you could do something similar in python.
//source data
val visitorDF = Seq((2,"Panda",15),(3,"Candy",15),(1,"Bahroze",15),(4,"Test",25)).toDF("UserID","UserLabel","Total")
val conversionsDF = Seq((2,"Panda",37),(3,"Candy",27),(1,"Bahroze",39)).toDF("UserID","UserLabel","Total")
val revenueDF = Seq((2,"Panda",7342),(3,"Candy",5669),(1,"Bahroze",8361)).toDF("UserID","UserLabel","Total")
import org.apache.spark.sql.functions._
val finalDF = visitorDF.as("v").join(conversionsDF.as("c"),Seq("UserID","UserLabel"),"left")
.join(revenueDF.as("r"),Seq("UserID","UserLabel"),"left")
.withColumn("TotalArray",struct($"v.Total".as("Visitor"),$"c.Total".as("Conversions"),$"r.Total".as("Revenue")))
.drop("Total")
display(finalDF)
You can see the output as below :
I have a data set (example) that when imported with
df = spark.read.csv(filename, header=True, inferSchema=True)
df.show()
will assign the column with 'NA' as a stringType(), where I would like it to be IntegerType() (or ByteType()).
I then tried to set
schema = StructType([
StructField("col_01", IntegerType()),
StructField("col_02", DateType()),
StructField("col_03", IntegerType())
])
df = spark.read.csv(filename, header=True, schema=schema)
df.show()
The output shows the entire row with 'col_03' = null to be null.
However col_01 and col_02 return appropriate data if they are called with
df.select(['col_01','col_02']).show()
I can find a way around this by post casting the data type of col_3
df = spark.read.csv(filename, header=True, inferSchema=True)
df = df.withColumn('col_3',df['col_3'].cast(IntegerType()))
df.show()
, but I think it is not ideal and would be much better if I can assign the data type for each column directly with setting schema.
Would anyone be able to guide me what I do incorrectly? Or casting the data types after importing is the only solution? Any comment regarding performance of the two approaches (if we can make assigning schema to work) is also welcome.
Thank you,
You can set a new null value in spark's csv loader using nullValue:
for a csv file looking like this:
col_01,col_02,col_03
111,2007-11-18,3
112,2002-12-03,4
113,2007-02-14,5
114,2003-04-16,NA
115,2011-08-24,2
116,2003-05-03,3
117,2001-06-11,4
118,2004-05-06,NA
119,2012-03-25,5
120,2006-10-13,4
and forcing schema:
from pyspark.sql.types import StructType, IntegerType, DateType
schema = StructType([
StructField("col_01", IntegerType()),
StructField("col_02", DateType()),
StructField("col_03", IntegerType())
])
You'll get:
df = spark.read.csv(filename, header=True, nullValue='NA', schema=schema)
df.show()
df.printSchema()
+------+----------+------+
|col_01| col_02|col_03|
+------+----------+------+
| 111|2007-11-18| 3|
| 112|2002-12-03| 4|
| 113|2007-02-14| 5|
| 114|2003-04-16| null|
| 115|2011-08-24| 2|
| 116|2003-05-03| 3|
| 117|2001-06-11| 4|
| 118|2004-05-06| null|
| 119|2012-03-25| 5|
| 120|2006-10-13| 4|
+------+----------+------+
root
|-- col_01: integer (nullable = true)
|-- col_02: date (nullable = true)
|-- col_03: integer (nullable = true)
Try this once - (But this will read every column as string type. You can type caste as per your requirement)
import csv
from pyspark.sql.types import IntegerType
data = []
with open('filename', 'r' ) as doc:
reader = csv.DictReader(doc)
for line in reader:
data.append(line)
df = sc.parallelize(data).toDF()
df = df.withColumn("col_03", df["col_03"].cast(IntegerType()))
I am trying to apply pyspark sql functions hash algorithm for every row in two dataframes to identify the differences. Hash algorithm is case sensitive .i.e. if column contains 'APPLE' and 'Apple' are considered as two different values, so I want to change the case for both dataframes to either upper or lower. I am able to achieve only for dataframe headers but not for dataframe values.Please help
#Code for Dataframe column headers
self.df_db1 =self.df_db1.toDF(*[c.lower() for c in self.df_db1.columns])
Assuming df is your dataframe, this should do the work:
from pyspark.sql import functions as F
for col in df.columns:
df = df.withColumn(col, F.lower(F.col(col)))
Both answers seems to be ok with one exception - if you have numeric column, it will be converted to string column. To avoid this, try:
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._
val fields = df.schema.fields
val stringFields = df.schema.fields.filter(f => f.dataType == StringType)
val nonStringFields = df.schema.fields.filter(f => f.dataType != StringType).map(f => f.name).map(f => col(f))
val stringFieldsTransformed = stringFields .map (f => f.name).map(f => upper(col(f)).as(f))
val df = sourceDF.select(stringFieldsTransformed ++ nonStringFields: _*)
Now types are correct also when you have non-string fields, i.e. numeric fields).
If you know that each column is of String type, use one of the other answers - they are correct in that cases :)
Python code in PySpark:
from pyspark.sql.functions import *
from pyspark.sql.types import *
sourceDF = spark.createDataFrame([(1, "a")], ['n', 'n1'])
fields = sourceDF.schema.fields
stringFields = filter(lambda f: isinstance(f.dataType, StringType), fields)
nonStringFields = map(lambda f: col(f.name), filter(lambda f: not isinstance(f.dataType, StringType), fields))
stringFieldsTransformed = map(lambda f: upper(col(f.name)), stringFields)
allFields = [*stringFieldsTransformed, *nonStringFields]
df = sourceDF.select(allFields)
You can generate an expression using list comprehension:
from pyspark.sql import functions as psf
expression = [ psf.lower(psf.col(x)).alias(x) for x in df.columns ]
And then just call it over your existing dataframe
>>> df.show()
+---+---+---+---+
| c1| c2| c3| c4|
+---+---+---+---+
| A| B| C| D|
+---+---+---+---+
>>> df.select(*select_expression).show()
+---+---+---+---+
| c1| c2| c3| c4|
+---+---+---+---+
| a| b| c| d|
+---+---+---+---+