What/why are the differences between those three? Is a GADT (and regular data types) just a shorthand for a data family? Specifically what's the difference between:
data GADT a where
MkGADT :: Int -> GADT Int
data family FGADT a
data instance FGADT a where -- note not FGADT Int
MkFGADT :: Int -> FGADT Int
data family DF a
data instance DF Int where -- using GADT syntax, but not a GADT
MkDF :: Int -> DF Int
(Are those examples over-simplified, so I'm not seeing the subtleties of the differences?)
Data families are extensible, but GADTs are not. OTOH data family instances must not overlap. So I couldn't declare another instance/any other constructors for FGADT; just like I can't declare any other constructors for GADT. I can declare other instances for DF.
With pattern matching on those constructors, the rhs of the equation does 'know' that the payload is Int.
For class instances (I was surprised to find) I can write overlapping instances to consume GADTs:
instance C (GADT a) ...
instance {-# OVERLAPPING #-} C (GADT Int) ...
and similarly for (FGADT a), (FGADT Int). But not for (DF a): it must be for (DF Int) -- that makes sense; there's no data instance DF a, and if there were it would overlap.
ADDIT: to clarify #kabuhr's answer (thank you)
contrary to what I think you're claiming in part of your question, for a plain data family, matching on a constructor does not perform any inference
These types are tricky, so I expect I'd need explicit signatures to work with them. In that case the plain data family is easiest
inferDF (MkDF x) = x -- works without a signature
The inferred type inferDF :: DF Int -> Int makes sense. Giving it a signature inferDF :: DF a -> a doesn't make sense: there is no declaration for a data instance DF a .... Similarly with foodouble :: Foo Char a -> a there is no data instance Foo Char a ....
GADTs are awkward, I already know. So neither of these work without an explicit signature
inferGADT (MkGADT x) = x
inferFGADT (MkFGADT x) = x
Mysterious "untouchable" message, as you say. What I meant in my "matching on those constructors" comment was: the compiler 'knows' on rhs of an equation that the payload is Int (for all three constructors), so you'd better get any signatures consistent with that.
Then I'm thinking data GADT a where ... is as if data instance GADT a where .... I can give a signature inferGADT :: GADT a -> a or inferGADT :: GADT Int -> Int (likewise for inferFGADT). That makes sense: there is a data instance GADT a ... or I can give a signature at a more specific type.
So in some ways data families are generalisations of GADTs. I also see as you say
So, in some ways, GADTs are generalizations of data families.
Hmm. (The reason behind the question is that GHC Haskell has got to the stage of feature bloat: there's too many similar-but-different extensions. I was trying to prune it down to a smaller number of underlying abstractions. Then #HTNW's approach of explaining in terms of yet further extensions is opposite to what would help a learner. IMO existentials in data types should be chucked out: use GADTs instead. PatternSynonyms should be explained in terms of data types and mapping functions between them, not the other way round. Oh, and there's some DataKinds stuff, which I skipped over on first reading.)
As a start, you should think of a data family as a collection of independent ADTs that happen to be indexed by a type, while a GADT is a single data type with an inferrable type parameter where constraints on that parameter (typically, equality constraints like a ~ Int) can be brought into scope by pattern matching.
This means that the biggest difference is that, contrary to what I think you're claiming in part of your question, for a plain data family, matching on a constructor does not perform any inference on the type parameter. In particular, this typechecks:
inferGADT :: GADT a -> a
inferGADT (MkGADT n) = n
but this does not:
inferDF :: DF a -> a
inferDF (MkDF n) = n
and without type signatures, the first would fail to type check (with a mysterious "untouchable" message) while the second would be inferred as DF Int -> Int.
The situation becomes quite a bit more confusing for something like your FGADT type that combines data families with GADTs, and I confess I haven't really thought about how this works in detail. But, as an interesting example, consider:
data family Foo a b
data instance Foo Int a where
Bar :: Double -> Foo Int Double
Baz :: String -> Foo Int String
data instance Foo Char Double where
Quux :: Double -> Foo Char Double
data instance Foo Char String where
Zlorf :: String -> Foo Char String
In this case, Foo Int a is a GADT with an inferrable a parameter:
fooint :: Foo Int a -> a
fooint (Bar x) = x + 1.0
fooint (Baz x) = x ++ "ish"
but Foo Char a is just a collection of separate ADTs, so this won't typecheck:
foodouble :: Foo Char a -> a
foodouble (Quux x) = x
for the same reason inferDF won't typecheck above.
Now, getting back to your plain DF and GADT types, you can largely emulate DFs just using GADTs. For example, if you have a DF:
data family MyDF a
data instance MyDF Int where
IntLit :: Int -> MyDF Int
IntAdd :: MyDF Int -> MyDF Int -> MyDF Int
data instance MyDF Bool where
Positive :: MyDF Int -> MyDF Bool
you can write it as a GADT just by writing separate blocks of constructors:
data MyGADT a where
-- MyGADT Int
IntLit' :: Int -> MyGADT Int
IntAdd' :: MyGADT Int -> MyGADT Int -> MyGADT Int
-- MyGADT Bool
Positive' :: MyGADT Int -> MyGADT Bool
So, in some ways, GADTs are generalizations of data families. However, a major use case for data families is defining associated data types for classes:
class MyClass a where
data family MyRep a
instance MyClass Int where
data instance MyRep Int = ...
instance MyClass String where
data instance MyRep String = ...
where the "open" nature of data families is needed (and where the pattern-based inference methods of GADTs aren't helpful).
I think the difference becomes clear if we use PatternSynonyms-style type signatures for data constructors. Lets start with Haskell 98
data D a = D a a
You get a pattern type:
pattern D :: forall a. a -> a -> D a
it can be read in two directions. D, in "forward" or expression contexts, says, "forall a, you can give me 2 as and I'll give you a D a". "Backwards", as a pattern, it says, "forall a, you can give me a D a and I'll give you 2 as".
Now, the things you write in a GADT definition are not pattern types. What are they? Lies. Lies lies lies. Give them attention only insofar as the alternative is writing them out manually with ExistentialQuantification. Let's use this one
data GD a where
GD :: Int -> GD Int
You get
-- vv ignore
pattern GD :: forall a. () => (a ~ Int) => Int -> GD a
This says: forall a, you can give me a GD a, and I can give you a proof that a ~ Int, plus an Int.
Important observation: The return/match type of a GADT constructor is always the "data type head". I defined data GD a where ...; I got GD :: forall a. ... GD a. This is also true for Haskell 98 constructors, and also data family constructors, though it's a bit more subtle.
If I have a GD a, and I don't know what a is, I can pass into GD anyway, even though I wrote GD :: Int -> GD Int, which seems to say I can only match it with GD Ints. This is why I say GADT constructors lie. The pattern type never lies. It clearly states that, forall a, I can match a GD a with the GD constructor and get evidence for a ~ Int and a value of Int.
Ok, data familys. Lets not mix them with GADTs yet.
data Nat = Z | S Nat
data Vect (n :: Nat) (a :: Type) :: Type where
VNil :: Vect Z a
VCons :: a -> Vect n a -> Vect (S n) a -- try finding the pattern types for these btw
data family Rect (ns :: [Nat]) (a :: Type) :: Type
newtype instance Rect '[] a = RectNil a
newtype instance Rect (n : ns) a = RectCons (Vect n (Rect ns a))
There are actually two data type heads now. As #K.A.Buhr says, the different data instances act like different data types that just happen to share a name. The pattern types are
pattern RectNil :: forall a. a -> Rect '[] a
pattern RectCons :: forall n ns a. Vect n (Rect ns a) -> Rect (n : ns) a
If I have a Rect ns a, and I don't know what ns is, I cannot match on it. RectNil only takes Rect '[] as, RectCons only takes Rect (n : ns) as. You might ask: "why would I want a reduction in power?" #KABuhr has given one: GADTs are closed (and for good reason; stay tuned), families are open. This doesn't hold in Rect's case, as these instances already fill up the entire [Nat] * Type space. The reason is actually newtype.
Here's a GADT RectG:
data RectG :: [Nat] -> Type -> Type where
RectGN :: a -> RectG '[] a
RectGC :: Vect n (RectG ns a) -> RectG (n : ns) a
I get
-- it's fine if you don't get these
pattern RectGN :: forall ns a. () => (ns ~ '[]) => a -> RectG ns a
pattern RectGC :: forall ns' a. forall n ns. (ns' ~ (n : ns)) =>
Vect n (RectG ns a) -> RectG ns' a
-- just note that they both have the same matched type
-- which means there needs to be a runtime distinguishment
If I have a RectG ns a and don't know what ns is, I can still match on it just fine. The compiler has to preserve this information with a data constructor. So, if I had a RectG [1000, 1000] Int, I would incur an overhead of one million RectGN constructors that all "preserve" the same "information". Rect [1000, 1000] Int is fine, though, as I do not have the ability to match and tell whether a Rect is RectNil or RectCons. This allows the constructor to be newtype, as it holds no information. I would instead use a different GADT, somewhat like
data SingListNat :: [Nat] -> Type where
SLNN :: SingListNat '[]
SLNCZ :: SingListNat ns -> SingListNat (Z : ns)
SLNCS :: SingListNat (n : ns) -> SingListNat (S n : ns)
that stores the dimensions of a Rect in O(sum ns) space instead of O(product ns) space (I think those are right). This is also why GADTs are closed and families are open. A GADT is just like a normal data type except it has equality evidence and existentials. It doesn't make sense to add constructors to a GADT any more than it makes sense to add constructors to a Haskell 98 type, because any code that doesn't know about one of the constructors is in for a very bad time. It's fine for families though, because, as you noticed, once you define a branch of a family, you cannot add more constructors in that branch. Once you know what branch you're in, you know the constructors, and no one can break that. You're not allowed to use any constructors if you don't know which branch to use.
Your examples don't really mix GADTs and data families. Pattern types are nifty in that they normalize away superficial differences in data definitions, so let's take a look.
data family FGADT a
data instance FGADT a where
MkFGADT :: Int -> FGADT Int
Gives you
pattern MkFGADT :: forall a. () => (a ~ Int) => Int -> FGADT a
-- no different from a GADT; data family does nothing
But
data family DF a
data instance DF Int where
MkDF :: Int -> DF Int
gives
pattern MkDF :: Int -> DF Int
-- GADT syntax did nothing
Here's a proper mixing
data family Map k :: Type -> Type
data instance Map Word8 :: Type -> Type where
MW8BitSet :: BitSet8 -> Map Word8 Bool
MW8General :: GeneralMap Word8 a -> Map Word8 a
Which gives patterns
pattern MW8BitSet :: forall a. () => (a ~ Bool) => BitSet8 -> Map Word8 a
pattern MW8General :: forall a. GeneralMap Word8 a -> Map Word8 a
If I have a Map k v and I don't know what k is, I can't match it against MW8General or MW8BitSet, because those only want Map Word8s. This is the data family's influence. If I have a Map Word8 v and I don't know what v is, matching on the constructors can reveal to me whether it's known to be Bool or is something else.
Related
According to the Haskell 2010 language report, its type checker is based on Hindley-Milner. So consider a function f of this type,
f :: forall a. [a] -> Int
It could be the length function for instance. According to Hindley-Milner, f [] type checks to Int. We can prove this by instantiating the type of f to [Int] -> Int, and the type of [] to [Int], then conclude that the application ([Int] -> Int) [Int] is of type Int.
In this proof, I chose to instantiate types forall a. [a] -> Int and forall a. [a] by substituting Int to a. I can substitute Bool instead, the proof works too. Isn't it strange in Hindley-Milner that we can apply a polymorphic type to another, without specifying which instances we use ?
More specifically, what in Haskell prevents me from using the type a in the implementation of f ? I could imagine that f is a function that equals 18 on any [Bool], and equals the usual length function on all other types of lists. In this case, would f [] be 18 or 0 ? The Haskell report says "the kernel is not formally specified", so it's hard to tell.
During type inference, such type variables can indeed instantiated to any type. This may be seen as a highly non deterministic step.
GHC, for what it is worth, uses the internal Any type in such cases. For instance, compiling
{-# NOINLINE myLength #-}
myLength :: [a] -> Int
myLength = length
test :: Int
test = myLength []
results in the following Core:
-- RHS size: {terms: 3, types: 4, coercions: 0}
myLength [InlPrag=NOINLINE] :: forall a_aw2. [a_aw2] -> Int
[GblId, Str=DmdType]
myLength =
\ (# a_aP5) -> length # [] Data.Foldable.$fFoldable[] # a_aP5
-- RHS size: {terms: 2, types: 6, coercions: 0}
test :: Int
[GblId, Str=DmdType]
test = myLength # GHC.Prim.Any (GHC.Types.[] # GHC.Prim.Any)
where GHC.Prim.Any occurs in the last line.
Now, is that really not deterministic? Well, it does involve a kind of non deterministic step "in the middle" of the algorithm, but the final resulting (most general) type is Int, and deterministically so. It does not matter what type we choose for a, we always get type Int at the end.
Of course, getting the same type is not enough: we also want to get the same Int value. I conjecture that it can be proven that, given
f :: forall a. T a
g :: forall a. T a -> U
then
g # V (f # V) :: U
is the same value whatever type V is. This should be a consequence of parametricity applied to those polymorphic types.
To follow-up on Chi's answer, here is the proof that f [] cannot depend on the type instances of f and []. According to Theorems for free (the last article here),
for any types a,a' and any function g :: a -> a', then
f_a = f_a' . map g
where f_a is the instantiation of f on type a, for example in Haskell
f_Bool :: [Bool] -> Int
f_Bool = f
Then if you evaluate the previous equality on []_a, it yields f_a []_a = f_a' []_a'. In the case of the original question, f_Int []_Int = f_Bool []_Bool.
Some references for parametricity in Haskell would be useful too, because Haskell looks stronger than the polymorphic lambda calculus described in Walder's paper. In particular, this wiki page says parametricity can be broken in Haskell by using the seq function.
The wiki page also says that my type-depending function exists (in other languages than Haskell), it is called ad-hoc polymorphism.
I've had to interface two libraries where metadata is represented as a type parameter in one and as a record field in the other. I wrote an adaptor using a GADT. Here's a distilled version:
{-# LANGUAGE GADTs #-}
newtype TFId a = MkId a
data TFDup a = MkDup !a !a
data GADT tf where
ConstructorId :: GADT TFId
ConstructorDup :: GADT TFDup
main = do
f ConstructorId
f ConstructorDup
f :: GADT tf -> IO ()
f = _
This works. (May not be perfect; comments welcome, but that's not the question.)
It took me some time to get to this working state. My initial intuition was to use a type family for TFId, figuring: “GADT has kind (* -> *) -> *; in ConstructorDup TFDup has kind * -> *; so for ConstructorId I can use the following * -> * type family:”
{-# LANGUAGE TypeFamilies #-}
type family TFId a where TFId a = a
The type constructor does have the same kind * -> *, but GHC apparently won't have it in the same place:
error: …
The type family ‘TFId’ should have 1 argument, but has been given none
In the definition of data constructor ‘ConstructorId’
In the data type declaration for ‘GADT’
Well, if it says so…
I'm no sure I understand why it would make such a difference. No using type family stems without applying them? What's going on? Any other (better) way to do?
Injectivity.
type family F :: * -> *
type instance F Int = Bool
type instance F Char = Bool
here F Int ~ F Char. However,
data G (a :: *) = ...
will never cause G Int ~ G Char. These are guaranteed to be distinct types.
In universal quantifications like
foo :: forall f a. f a -> a
f is allowed to be G (injective) but not allowed to be F (not injective).
This is to make inference work. foo (... :: G Int) can be inferred to have type Int. foo (... :: F Int) is equivalent to foo (... :: Bool) which may have type Int, or type Char -- it's an ambiguous type.
Also consider foo True. We can't expect GHC to choose f ~ F, a ~ Int (or Char) for us. This would involve looking at all type families and see if Bool can be produced by any on them -- essentially, we would need to invert all the type families. Even if this were feasible, it would generate a huge amount of possible solutions, so it would be ambiguous.
A type constructor produces a type given a type. For example, the Maybe constructor
data Maybe a = Nothing | Just a
could be a given a concrete type, like Char, and give a concrete type, like Maybe Char. In terms of kinds, one has
GHCI> :k Maybe
Maybe :: * -> *
My question: Is it possible to define a type constructor that yields a concrete type given a Char, say? Put another way, is it possible to mix kinds and types in the type signature of a type constructor? Something like
GHCI> :k my_type
my_type :: Char -> * -> *
Can a Haskell type constructor have non-type parameters?
Let's unpack what you mean by type parameter. The word type has (at least) two potential meanings: do you mean type in the narrow sense of things of kind *, or in the broader sense of things at the type level? We can't (yet) use values in types, but modern GHC features a very rich kind language, allowing us to use a wide range of things other than concrete types as type parameters.
Higher-Kinded Types
Type constructors in Haskell have always admitted non-* parameters. For example, the encoding of the fixed point of a functor works in plain old Haskell 98:
newtype Fix f = Fix { unFix :: f (Fix f) }
ghci> :k Fix
Fix :: (* -> *) -> *
Fix is parameterised by a functor of kind * -> *, not a type of kind *.
Beyond * and ->
The DataKinds extension enriches GHC's kind system with user-declared kinds, so kinds may be built of pieces other than * and ->. It works by promoting all data declarations to the kind level. That is to say, a data declaration like
data Nat = Z | S Nat -- natural numbers
introduces a kind Nat and type constructors Z :: Nat and S :: Nat -> Nat, as well as the usual type and value constructors. This allows you to write datatypes parameterised by type-level data, such as the customary vector type, which is a linked list indexed by its length.
data Vec n a where
Nil :: Vec Z a
(:>) :: a -> Vec n a -> Vec (S n) a
ghci> :k Vec
Vec :: Nat -> * -> *
There's a related extension called ConstraintKinds, which frees constraints like Ord a from the yoke of the "fat arrow" =>, allowing them to roam across the landscape of the type system as nature intended. Kmett has used this power to build a category of constraints, with the newtype (:-) :: Constraint -> Constraint -> * denoting "entailment": a value of type c :- d is a proof that if c holds then d also holds. For example, we can prove that Ord a implies Eq [a] for all a:
ordToEqList :: Ord a :- Eq [a]
ordToEqList = Sub Dict
Life after forall
However, Haskell currently maintains a strict separation between the type level and the value level. Things at the type level are always erased before the program runs, (almost) always inferrable, invisible in expressions, and (dependently) quantified by forall. If your application requires something more flexible, such as dependent quantification over runtime data, then you have to manually simulate it using a singleton encoding.
For example, the specification of split says it chops a vector at a certain length according to its (runtime!) argument. The type of the output vector depends on the value of split's argument. We'd like to write this...
split :: (n :: Nat) -> Vec (n :+: m) a -> (Vec n a, Vec m a)
... where I'm using the type function (:+:) :: Nat -> Nat -> Nat, which stands for addition of type-level naturals, to ensure that the input vector is at least as long as n...
type family n :+: m where
Z :+: m = m
S n :+: m = S (n :+: m)
... but Haskell won't allow that declaration of split! There aren't any values of type Z or S n; only types of kind * contain values. We can't access n at runtime directly, but we can use a GADT which we can pattern-match on to learn what the type-level n is:
data Natty n where
Zy :: Natty Z
Sy :: Natty n -> Natty (S n)
ghci> :k Natty
Natty :: Nat -> *
Natty is called a singleton, because for a given (well-defined) n there is only one (well-defined) value of type Natty n. We can use Natty n as a run-time stand-in for n.
split :: Natty n -> Vec (n :+: m) a -> (Vec n a, Vec m a)
split Zy xs = (Nil, xs)
split (Sy n) (x :> xs) =
let (ys, zs) = split n xs
in (x :> ys, zs)
Anyway, the point is that values - runtime data - can't appear in types. It's pretty tedious to duplicate the definition of Nat in singleton form (and things get worse if you want the compiler to infer such values); dependently-typed languages like Agda, Idris, or a future Haskell escape the tyranny of strictly separating types from values and give us a range of expressive quantifiers. You're able to use an honest-to-goodness Nat as split's runtime argument and mention its value dependently in the return type.
#pigworker has written extensively about the unsuitability of Haskell's strict separation between types and values for modern dependently-typed programming. See, for example, the Hasochism paper, or his talk on the unexamined assumptions that have been drummed into us by four decades of Hindley-Milner-style programming.
Dependent Kinds
Finally, for what it's worth, with TypeInType modern GHC unifies types and kinds, allowing us to talk about kind variables using the same tools that we use to talk about type variables. In a previous post about session types I made use of TypeInType to define a kind for tagged type-level sequences of types:
infixr 5 :!, :?
data Session = Type :! Session -- Type is a synonym for *
| Type :? Session
| E
I'd recommend #Benjamin Hodgson's answer and the references he gives to see how to make this sort of thing useful. But, to answer your question more directly, using several extensions (DataKinds, KindSignatures, and GADTs), you can define types that are parameterized on (certain) concrete types.
For example, here's one parameterized on the concrete Bool datatype:
{-# LANGUAGE DataKinds, KindSignatures, GADTs #-}
{-# LANGUAGE FlexibleInstances #-}
module FlaggedType where
-- The single quotes below are optional. They serve to notify
-- GHC that we are using the type-level constructors lifted from
-- data constructors rather than types of the same name (and are
-- only necessary where there's some kind of ambiguity otherwise).
data Flagged :: Bool -> * -> * where
Truish :: a -> Flagged 'True a
Falsish :: a -> Flagged 'False a
-- separate instances, just as if they were different types
-- (which they are)
instance (Show a) => Show (Flagged 'False a) where
show (Falsish x) = show x
instance (Show a) => Show (Flagged 'True a) where
show (Truish x) = show x ++ "*"
-- these lists have types as indicated
x = [Truish 1, Truish 2, Truish 3] -- :: Flagged 'True Integer
y = [Falsish "a", Falsish "b", Falsish "c"] -- :: Flagged 'False String
-- this won't typecheck: it's just like [1,2,"abc"]
z = [Truish 1, Truish 2, Falsish 3] -- won't typecheck
Note that this isn't much different from defining two completely separate types:
data FlaggedTrue a = Truish a
data FlaggedFalse a = Falsish a
In fact, I'm hard pressed to think of any advantage Flagged has over defining two separate types, except if you have a bar bet with someone that you can write useful Haskell code without type classes. For example, you can write:
getInt :: Flagged a Int -> Int
getInt (Truish z) = z -- same polymorphic function...
getInt (Falsish z) = z -- ...defined on two separate types
Maybe someone else can think of some other advantages.
Anyway, I believe that parameterizing types with concrete values really only becomes useful when the concrete type is sufficient "rich" that you can use it to leverage the type checker, as in Benjamin's examples.
As #user2407038 noted, most interesting primitive types, like Ints, Chars, Strings and so on can't be used this way. Interestingly enough, though, you can use literal positive integers and strings as type parameters, but they are treated as Nats and Symbols (as defined in GHC.TypeLits) respectively.
So something like this is possible:
import GHC.TypeLits
data Tagged :: Symbol -> Nat -> * -> * where
One :: a -> Tagged "one" 1 a
Two :: a -> Tagged "two" 2 a
Three :: a -> Tagged "three" 3 a
Look at using Generalized Algebraic Data Types (GADTS), which enable you to define concrete outputs based on input type, e.g.
data CustomMaybe a where
MaybeChar :: Maybe a -> CustomMaybe Char
MaybeString :: Maybe a > CustomMaybe String
MaybeBool :: Maybe a -> CustomMaybe Bool
exampleFunction :: CustomMaybe a -> a
exampleFunction (MaybeChar maybe) = 'e'
exampleFunction (MaybeString maybe) = True //Compile error
main = do
print $ exampleFunction (MaybeChar $ Just 10)
To a similar effect, RankNTypes can allow the implementation of similar behaviour:
exampleFunctionOne :: a -> a
exampleFunctionOne el = el
type PolyType = forall a. a -> a
exampleFuntionTwo :: PolyType -> Int
exampleFunctionTwo func = func 20
exampleFunctionTwo func = func "Hello" --Compiler error, PolyType being forced to return 'Int'
main = do
print $ exampleFunctionTwo exampleFunctionOne
The PolyType definition allows you to insert the polymorphic function within exampleFunctionTwo and force its output to be 'Int'.
No. Haskell doesn't have dependent types (yet). See https://typesandkinds.wordpress.com/2016/07/24/dependent-types-in-haskell-progress-report/ for some discussion of when it may.
In the meantime, you can get behavior like this in Agda, Idris, and Cayenne.
I have played around with TypeFamilies, FunctionalDependencies, and MultiParamTypeClasses. And it seems to me as though TypeFamilies doesn't add any concrete functionality over the other two. (But not vice versa). But I know type families are pretty well liked so I feel like I am missing something:
"open" relation between types, such as a conversion function, which does not seem possible with TypeFamilies. Done with MultiParamTypeClasses:
class Convert a b where
convert :: a -> b
instance Convert Foo Bar where
convert = foo2Bar
instance Convert Foo Baz where
convert = foo2Baz
instance Convert Bar Baz where
convert = bar2Baz
Surjective relation between types, such as a sort of type safe pseudo-duck typing mechanism, that would normally be done with a standard type family. Done with MultiParamTypeClasses and FunctionalDependencies:
class HasLength a b | a -> b where
getLength :: a -> b
instance HasLength [a] Int where
getLength = length
instance HasLength (Set a) Int where
getLength = S.size
instance HasLength Event DateDiff where
getLength = dateDiff (start event) (end event)
Bijective relation between types, such as for an unboxed container, which could be done through TypeFamilies with a data family, although then you have to declare a new data type for every contained type, such as with a newtype. Either that or with an injective type family, which I think is not available prior to GHC 8. Done with MultiParamTypeClasses and FunctionalDependencies:
class Unboxed a b | a -> b, b -> a where
toList :: a -> [b]
fromList :: [b] -> a
instance Unboxed FooVector Foo where
toList = fooVector2List
fromList = list2FooVector
instance Unboxed BarVector Bar where
toList = barVector2List
fromList = list2BarVector
And lastly a surjective relations between two types and a third type, such as python2 or java style division function, which can be done with TypeFamilies by also using MultiParamTypeClasses. Done with MultiParamTypeClasses and FunctionalDependencies:
class Divide a b c | a b -> c where
divide :: a -> b -> c
instance Divide Int Int Int where
divide = div
instance Divide Int Double Double where
divide = (/) . fromIntegral
instance Divide Double Int Double where
divide = (. fromIntegral) . (/)
instance Divide Double Double Double where
divide = (/)
One other thing I should also add is that it seems like FunctionalDependencies and MultiParamTypeClasses are also quite a bit more concise (for the examples above anyway) as you only have to write the type once, and you don't have to come up with a dummy type name which you then have to type for every instance like you do with TypeFamilies:
instance FooBar LongTypeName LongerTypeName where
FooBarResult LongTypeName LongerTypeName = LongestTypeName
fooBar = someFunction
vs:
instance FooBar LongTypeName LongerTypeName LongestTypeName where
fooBar = someFunction
So unless I am convinced otherwise it really seems like I should just not bother with TypeFamilies and use solely FunctionalDependencies and MultiParamTypeClasses. Because as far as I can tell it will make my code more concise, more consistent (one less extension to care about), and will also give me more flexibility such as with open type relationships or bijective relations (potentially the latter is solver by GHC 8).
Here's an example of where TypeFamilies really shines compared to MultiParamClasses with FunctionalDependencies. In fact, I challenge you to come up with an equivalent MultiParamClasses solution, even one that uses FlexibleInstances, OverlappingInstance, etc.
Consider the problem of type level substitution (I ran across a specific variant of this in Quipper in QData.hs). Essentially what you want to do is recursively substitute one type for another. For example, I want to be able to
substitute Int for Bool in Either [Int] String and get Either [Bool] String,
substitute [Int] for Bool in Either [Int] String and get Either Bool String,
substitute [Int] for [Bool] in Either [Int] String and get Either [Bool] String.
All in all, I want the usual notion of type level substitution. With a closed type family, I can do this for any types (albeit I need an extra line for each higher-kinded type constructor - I stopped at * -> * -> * -> * -> *).
{-# LANGUAGE TypeFamilies #-}
-- Subsitute type `x` for type `y` in type `a`
type family Substitute x y a where
Substitute x y x = y
Substitute x y (k a b c d) = k (Substitute x y a) (Substitute x y b) (Substitute x y c) (Substitute x y d)
Substitute x y (k a b c) = k (Substitute x y a) (Substitute x y b) (Substitute x y c)
Substitute x y (k a b) = k (Substitute x y a) (Substitute x y b)
Substitute x y (k a) = k (Substitute x y a)
Substitute x y a = a
And trying at ghci I get the desired output:
> :t undefined :: Substitute Int Bool (Either [Int] String)
undefined :: Either [Bool] [Char]
> :t undefined :: Substitute [Int] Bool (Either [Int] String)
undefined :: Either Bool [Char]
> :t undefined :: Substitute [Int] [Bool] (Either [Int] String)
undefined :: Either [Bool] [Char]
With that said, maybe you should be asking yourself why am I using MultiParamClasses and not TypeFamilies. Of the examples you gave above, all except Convert translate to type families (albeit you will need an extra line per instance for the type declaration).
Then again, for Convert, I am not convinced it is a good idea to define such a thing. The natural extension to Convert would be instances such as
instance (Convert a b, Convert b c) => Convert a c where
convert = convert . convert
instance Convert a a where
convert = id
which are as unresolvable for GHC as they are elegant to write...
To be clear, I am not saying there are no uses of MultiParamClasses, just that when possible you should be using TypeFamilies - they let you think about type-level functions instead of just relations.
This old HaskellWiki page does an OK job of comparing the two.
EDIT
Some more contrasting and history I stumbled upon from augustss blog
Type families grew out of the need to have type classes with
associated types. The latter is not strictly necessary since it can be
emulated with multi-parameter type classes, but it gives a much nicer
notation in many cases. The same is true for type families; they can
also be emulated by multi-parameter type classes. But MPTC gives a
very logic programming style of doing type computation; whereas type
families (which are just type functions that can pattern match on the
arguments) is like functional programming.
Using closed type families
adds some extra strength that cannot be achieved by type classes. To
get the same power from type classes we would need to add closed type
classes. Which would be quite useful; this is what instance chains
gives you.
Functional dependencies only affect the process of constraint solving, while type families introduced the notion of non-syntactic type equality, represented in GHC's intermediate form by coercions. This means type families interact better with GADTs. See this question for the canonical example of how functional dependencies fail here.
I have a type
class IntegerAsType a where
value :: a -> Integer
data T5
instance IntegerAsType T5 where value _ = 5
newtype (IntegerAsType q) => Zq q = Zq Integer deriving (Eq)
newtype (Num a, IntegerAsType n) => PolyRing a n = PolyRing [a]
I'm trying to make a nice "show" for the PolyRing type. In particular, I want the "show" to print out the type 'a'. Is there a function that returns the type of an algebraic parameter (a 'show' for types)?
The other way I'm trying to do it is using pattern matching, but I'm running into problems with built-in types and the algebraic type.
I want a different result for each of Integer, Int and Zq q.
(toy example:)
test :: (Num a, IntegerAsType q) => a -> a
(Int x) = x+1
(Integer x) = x+2
(Zq x) = x+3
There are at least two different problems here.
1) Int and Integer are not data constructors for the 'Int' and 'Integer' types. Are there data constructors for these types/how do I pattern match with them?
2) Although not shown in my code, Zq IS an instance of Num. The problem I'm getting is:
Ambiguous constraint `IntegerAsType q'
At least one of the forall'd type variables mentioned by the constraint
must be reachable from the type after the '=>'
In the type signature for `test':
test :: (Num a, IntegerAsType q) => a -> a
I kind of see why it is complaining, but I don't know how to get around that.
Thanks
EDIT:
A better example of what I'm trying to do with the test function:
test :: (Num a) => a -> a
test (Integer x) = x+2
test (Int x) = x+1
test (Zq x) = x
Even if we ignore the fact that I can't construct Integers and Ints this way (still want to know how!) this 'test' doesn't compile because:
Could not deduce (a ~ Zq t0) from the context (Num a)
My next try at this function was with the type signature:
test :: (Num a, IntegerAsType q) => a -> a
which leads to the new error
Ambiguous constraint `IntegerAsType q'
At least one of the forall'd type variables mentioned by the constraint
must be reachable from the type after the '=>'
I hope that makes my question a little clearer....
I'm not sure what you're driving at with that test function, but you can do something like this if you like:
{-# LANGUAGE ScopedTypeVariables #-}
class NamedType a where
name :: a -> String
instance NamedType Int where
name _ = "Int"
instance NamedType Integer where
name _ = "Integer"
instance NamedType q => NamedType (Zq q) where
name _ = "Zq (" ++ name (undefined :: q) ++ ")"
I would not be doing my Stack Overflow duty if I did not follow up this answer with a warning: what you are asking for is very, very strange. You are probably doing something in a very unidiomatic way, and will be fighting the language the whole way. I strongly recommend that your next question be a much broader design question, so that we can help guide you to a more idiomatic solution.
Edit
There is another half to your question, namely, how to write a test function that "pattern matches" on the input to check whether it's an Int, an Integer, a Zq type, etc. You provide this suggestive code snippet:
test :: (Num a) => a -> a
test (Integer x) = x+2
test (Int x) = x+1
test (Zq x) = x
There are a couple of things to clear up here.
Haskell has three levels of objects: the value level, the type level, and the kind level. Some examples of things at the value level include "Hello, world!", 42, the function \a -> a, or fix (\xs -> 0:1:zipWith (+) xs (tail xs)). Some examples of things at the type level include Bool, Int, Maybe, Maybe Int, and Monad m => m (). Some examples of things at the kind level include * and (* -> *) -> *.
The levels are in order; value level objects are classified by type level objects, and type level objects are classified by kind level objects. We write the classification relationship using ::, so for example, 32 :: Int or "Hello, world!" :: [Char]. (The kind level isn't too interesting for this discussion, but * classifies types, and arrow kinds classify type constructors. For example, Int :: * and [Int] :: *, but [] :: * -> *.)
Now, one of the most basic properties of Haskell is that each level is completely isolated. You will never see a string like "Hello, world!" in a type; similarly, value-level objects don't pass around or operate on types. Moreover, there are separate namespaces for values and types. Take the example of Maybe:
data Maybe a = Nothing | Just a
This declaration creates a new name Maybe :: * -> * at the type level, and two new names Nothing :: Maybe a and Just :: a -> Maybe a at the value level. One common pattern is to use the same name for a type constructor and for its value constructor, if there's only one; for example, you might see
newtype Wrapped a = Wrapped a
which declares a new name Wrapped :: * -> * at the type level, and simultaneously declares a distinct name Wrapped :: a -> Wrapped a at the value level. Some particularly common (and confusing examples) include (), which is both a value-level object (of type ()) and a type-level object (of kind *), and [], which is both a value-level object (of type [a]) and a type-level object (of kind * -> *). Note that the fact that the value-level and type-level objects happen to be spelled the same in your source is just a coincidence! If you wanted to confuse your readers, you could perfectly well write
newtype Huey a = Louie a
newtype Louie a = Dewey a
newtype Dewey a = Huey a
where none of these three declarations are related to each other at all!
Now, we can finally tackle what goes wrong with test above: Integer and Int are not value constructors, so they can't be used in patterns. Remember -- the value level and type level are isolated, so you can't put type names in value definitions! By now, you might wish you had written test' instead:
test' :: Num a => a -> a
test' (x :: Integer) = x + 2
test' (x :: Int) = x + 1
test' (Zq x :: Zq a) = x
...but alas, it doesn't quite work like that. Value-level things aren't allowed to depend on type-level things. What you can do is to write separate functions at each of the Int, Integer, and Zq a types:
testInteger :: Integer -> Integer
testInteger x = x + 2
testInt :: Int -> Int
testInt x = x + 1
testZq :: Num a => Zq a -> Zq a
testZq (Zq x) = Zq x
Then we can call the appropriate one of these functions when we want to do a test. Since we're in a statically-typed language, exactly one of these functions is going to be applicable to any particular variable.
Now, it's a bit onerous to remember to call the right function, so Haskell offers a slight convenience: you can let the compiler choose one of these functions for you at compile time. This mechanism is the big idea behind classes. It looks like this:
class Testable a where test :: a -> a
instance Testable Integer where test = testInteger
instance Testable Int where test = testInt
instance Num a => Testable (Zq a) where test = testZq
Now, it looks like there's a single function called test which can handle any of Int, Integer, or numeric Zq's -- but in fact there are three functions, and the compiler is transparently choosing one for you. And that's an important insight. The type of test:
test :: Testable a => a -> a
...looks at first blush like it is a function that takes a value that could be any Testable type. But in fact, it's a function that can be specialized to any Testable type -- and then only takes values of that type! This difference explains yet another reason the original test function didn't work. You can't have multiple patterns with variables at different types, because the function only ever works on a single type at a time.
The ideas behind the classes NamedType and Testable above can be generalized a bit; if you do, you get the Typeable class suggested by hammar above.
I think now I've rambled more than enough, and likely confused more things than I've clarified, but leave me a comment saying which parts were unclear, and I'll do my best.
Is there a function that returns the type of an algebraic parameter (a 'show' for types)?
I think Data.Typeable may be what you're looking for.
Prelude> :m + Data.Typeable
Prelude Data.Typeable> typeOf (1 :: Int)
Int
Prelude Data.Typeable> typeOf (1 :: Integer)
Integer
Note that this will not work on any type, just those which have a Typeable instance.
Using the extension DeriveDataTypeable, you can have the compiler automatically derive these for your own types:
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Typeable
data Foo = Bar
deriving Typeable
*Main> typeOf Bar
Main.Foo
I didn't quite get what you're trying to do in the second half of your question, but hopefully this should be of some help.