Spark SQL Fails when hive partition is missing - apache-spark

I have a table which has some missing partions. When I call it on hive it works fine
SELECT *
FROM my_table
but when call it from pyspark (v. 2.3.0) it fails with message Input path does not exist: hdfs://path/to/partition. The spark code I am running is just naive:
spark = ( SparkSession
.builder
.appName("prueba1")
.master("yarn")
.config("spark.sql.hive.verifyPartitionPath", "false")
.enableHiveSupport()
.getOrCreate())
spark.table('some_schema.my_table').show(10)
the config("spark.sql.hive.verifyPartitionPath", "false") has been proposed is
this question but seems to not work fine for me
Is there any way I can configure SparkSession so I can get rid of these. I am afraid that in the future more partitions will miss, so a hardcode solution is not possible

This error occurs when partitioned data dropped from HDFS i.e not using Hive commands to drop the partition.
If the data dropped from HDFS directly Hive doesn't know about the dropped the partition, when we query hive table it still looks for the directory and the directory doesn't exists in HDFS it results file not found exception.
To fix this issue we need to drop the partition associated with the directory in Hive table also by using
alter table <db_name>.<table_name> drop partition(<partition_col_name>=<partition_value>);
Then hive drops the partition from the metadata this is the only way to drop the metadata from the hive table if we dropped the partition directory from HDFS.
msck repair table doesn't drop the partitions instead only adds the new partitions if the new partition got added into HDFS.
The correct way to avoid these kind of issues in future drop the partitions by using Hive drop partition commands.

Does the other way around, .config("spark.sql.hive.verifyPartitionPath", "true") work for you? I have just managed to load data using spark-sql with this setting, while one of the partition paths from Hive was empty, and partition still existed in Hive metastore. Though there are caveats - it seems it takes significantly more time to load data compared to when this setting it set to false.

Related

Hive table requires 'repair' for every new partitions while inserting parquet files using pyspark

I have spark conf as:
sparkConf.set("spark.sql.sources.partitionOverwriteMode", "dynamic")
sparkConf.set("hive.exec.dynamic.partition", "true")
sparkConf.set("hive.exec.dynamic.partition.mode", "nonstrict")
I am using the spark context to write the parquet files into hdfs location as:
df.write.partitionBy('asofdate').mode('append').parquet('parquet_path')
In hdfs location, the parquet files are stored as 'asofdate' but in hive table I have to do 'MSCK REPAIR TABLE <tbl_name>' everyday. I am looking for a solution on how I can do recover table for every new partitions using spark script (or at the time of partition creation itself).
It's better if you integrate hive with spark to make your job easier.
After the hive-spark integration setup, you can enable hive support while creating SparkSession.
spark = SparkSession.builder.enableHiveSupport().getOrCreate()
Now you can access hive tables from spark.
You can run repair command from spark itself.
spark.sql("MSCK REPAIR TABLE <tbl_name>")
I would suggest to write dataframe directly as a hive table instead of writing it to parquet and do repair table.
df.write.partitionBy("<partition_column>").mode("append").format("parquet").saveAsTable("<table>")

Apache Spark not using partition information from Hive partitioned external table

I have a simple Hive-External table which is created on top of S3 (Files are in CSV format). When I run the hive query it shows all records and partitions.
However when I use the same table in Spark ( where the Spark SQL has a where condition on the partition column) it does not show that a partition filter is applied. However for a Hive Managed table , Spark is able to use the information of partitions and apply the partition filter.
Is there any flag or setting that can help me make use of partitions of Hive external tables in Spark ? Thanks.
Update :
For some reason, only the spark plan is not showing the Partition Filters. However, when you look at the data loaded its only loading the data needed from the partitions.
Ex: Where rating=0 , loads only one file of 1 MB, when I don't have filter its reads all 3 partition for 3 MB
tl; dr set the following before the running sql for external table
spark.sql("set spark.sql.hive.convertMetastoreOrc=true")
The difference in behaviour is not because of extenal/managed table.
The behaviour depends on two factors
1. Where the table was created(Hive or Spark)
2. File format (I believe it is ORC in this case, from the screen capture)
Where the table was created(Hive or Spark)
If the table was create using Spark APIs, it is considered as Datasource table.
If the table was created usng HiveQL, it is considered as Hive native table.
The metadata of both these tables are store in Hive metastore, the only difference is in the provider field of TBLPROPERTIES of the tables(describe extended <tblName>). The value of the property is orcor empty in Spark table and hive for a Hive.
How spark uses this information
When provider is not hive(datasource table), Spark uses its native way of processing the data.
If provider is hive, Spark uses Hive code to process the data.
Fileformat
Spark gives config flag to instruct the engine to use Datasource way of processing the data for the floowing file formats = Orc and Parquet
Flags:
Orc
val CONVERT_METASTORE_ORC = buildConf("spark.sql.hive.convertMetastoreOrc")
.doc("When set to true, the built-in ORC reader and writer are used to process " +
"ORC tables created by using the HiveQL syntax, instead of Hive serde.")
.booleanConf
.createWithDefault(true)
Parquet
val CONVERT_METASTORE_PARQUET = buildConf("spark.sql.hive.convertMetastoreParquet")
.doc("When set to true, the built-in Parquet reader and writer are used to process " +
"parquet tables created by using the HiveQL syntax, instead of Hive serde.")
.booleanConf
.createWithDefault(true)
I also ran into this kind of problem having multiple joins of internal and external tables.
None of the tricks work including:
spark.sql("set spark.sql.hive.convertMetastoreParquet=false")
spark.sql("set spark.sql.hive.metastorePartitionPruning=true")
spark.sql("set spark.sql.hive.caseSensitiveInferenceMode=NEVER_INFER")
anyone who knows how to solve this problem.

Does spark saveAsTable really create a table?

This may be a dumb question since lack of some fundamental knowledge of spark, I try this:
SparkSession spark = SparkSession.builder().appName("spark ...").master("local").enableHiveSupport().getOrCreate();
Dataset<Row> df = spark.range(10).toDF();
df.write().saveAsTable("foo");
This creates table under 'default' database in Hive, and of course, I can fetch data from the table anytime I want.
I update above code to get rid of "enableHiveSupport",
SparkSession spark = SparkSession.builder().appName("spark ...").master("local").getOrCreate();
Dataset<Row> df = spark.range(10).toDF();
df.write().saveAsTable("bar");
The code runs fine, without any error, but when I try "select * from bar", spark says,
Caused by: org.apache.spark.sql.catalyst.analysis.NoSuchTableException: Table or view 'bar' not found in database 'default';
So I have 2 questions here,
1) Is it possible to create a 'raw' spark table, not hive table? I know Hive mantains the metadata in database like mysql, does spark also have similar mechanism?
2) In the 2nd code snippet, what does spark actually create when calling saveAsTable?
Many thanks.
Check answers below:
If you want to create raw table only in spark createOrReplaceTempView could help you. For second part, check next answer.
By default, if you call saveAsTable on your dataframe, it will persistent tables into Hive metastore if you use enableHiveSupport. And if we don't enableHiveSupport, tables will be managed by Spark and data will be under spark-warehouse location. You will loose these tables after restart spark session.

Accessing Hive Tables from Spark SQL when Data is Stored in Object Storage

I am using spark dataframe writer to write the data in internal hive tables in parquet format in IBM Cloud Object Storage.
So , my hive metastore is in HDP cluster and I am running the spark job from the HDP cluster. This spark job writes the data to the IBM COS in parquet format.
This is how I am starting the spark session
SparkSession session = SparkSession.builder().appName("ParquetReadWrite")
.config("hive.metastore.uris", "<thrift_url>")
.config("spark.sql.sources.bucketing.enabled", true)
.enableHiveSupport()
.master("yarn").getOrCreate();
session.sparkContext().hadoopConfiguration().set("fs.cos.mpcos.iam.api.key",credentials.get(ConnectionConstants.COS_APIKEY));
session.sparkContext().hadoopConfiguration().set("fs.cos.mpcos.iam.service.id",credentials.get(ConnectionConstants.COS_SERVICE_ID));
session.sparkContext().hadoopConfiguration().set("fs.cos.mpcos.endpoint",credentials.get(ConnectionConstants.COS_ENDPOINT));
The issue that I am facing is that when I partition the data and store it (via partitionBy) I am unable to access the data directly from spark sql
spark.sql("select * from partitioned_table").show
To fetch the data from the partitioned table , I have to load the dataframe and register it as a temp table and then query it.
The above issue does not occur when the table is not partitioned.
The code to write the data is this
dfWithSchema.orderBy(sortKey).write()
.partitionBy("somekey")
.mode("append")
.format("parquet")
.option("path",PARQUET_PATH+tableName )
.saveAsTable(tableName);
Any idea why the the direct query approach is not working for the partitioned tables in COS/Parquet ?
To read the partitioned table(created by Spark), you need to give the absolute path of the table as below.
selected_Data=spark.read.format("parquet").option("header","false").load("hdfs/path/loc.db/partition_table")
To filter out it further, please try the below approach.
selected_Data.where(col("column_name")=='col_value').show()
This issue occurs when the property hive.metastore.try.direct.sql is set to true on the HiveMetastore configurations and the SparkSQL query is run over a non STRING type partition column.
For Spark, it is recommended to create tables with partition columns of STRING type.
If you are getting below error message while filtering the hive partitioned table in spark.
Caused by: MetaException(message:Filtering is supported only on partition keys of type string)
recreate your hive partitioned table with partition column datatype as string, then you would be able to access the data directly from spark sql.
else you have to specify the absolute path of your hdfs location to get the data incase your partitioned column has been defined as varchar.
selected_Data=spark.read.format("parquet").option("header","false").load("hdfs/path/loc.db/partition_table")
However I was not able to understand, why it's differentiating in between a varchar and string datatype for partition column

Spark DataFrame saveAsTable with partitionBy creates no ORC file in HDFS

I have a Spark dataframe which I want to save as Hive table with partitions. I tried the following two statements but they don't work. I don't see any ORC files in HDFS directory, it's empty. I can see baseTable is there in Hive console but obviously it's empty because of no files inside HDFS.
The following two lines saveAsTable() and insertInto()do not work. registerDataFrameAsTable() method works but it creates in memory table and causing OOM in my use case as I have thousands of Hive partitions to process. I am new to Spark.
dataFrame.write().mode(SaveMode.Append).partitionBy("entity","date").format("orc").saveAsTable("baseTable");
dataFrame.write().mode(SaveMode.Append).format("orc").partitionBy("entity","date").insertInto("baseTable");
//the following works but creates in memory table and seems to be reason for OOM in my case
hiveContext.registerDataFrameAsTable(dataFrame, "baseTable");
Hope you have already got your answer , but posting this answer for others reference, partitionBy was only supported for Parquet till Spark 1.4 , support for ORC ,JSON, text and avro was added in version 1.5+ please refer the doc below
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/sql/DataFrameWriter.html

Resources