Is standardized scaling a pre-requisite for applying PCA using sklearn? - scikit-learn

I have a set of 70 input variables on which I need to perform PCA. As per my understanding centering data such that for each input variable mean is 0 and variance is 1, is necessary for applying PCA.
I am having a hard time figuring it out that do I need to perform standard scaling preprocessing.StandardScaler()before passing my data set to PCA or PCA function in sklearn does it on its own.
If latter is the case then irrespective of if I do, or do not apply preprocessing.StandardScaler() the explained_variance_ratio_ should be the same.
But the results are different, hence I believe preprocessing.StandardScaler() is necessary before applying PCA. Is it true?

Yes, it' true, scikit-learn's PCA does not apply standardization to the input dataset, it only centers it by subtracting the mean.
See also this post.

Related

What is the difference between scale and fit in sklearn?

i am new to datascience and when i was going through one of the kaggle blog, i saw that the user is using both scale and fit on the data set. i tried to understand the difference by going through the documentation but was not able to understand
It's hard to understand the source of your confusion without any code. Inside the link you provided, the data is first scaled with sklearn.preprocessing.scale() and then fit to a sklearn.ensemble.GradientBoostingRegressor.
So the scaling operation transforms data such that all the features are represented on the same scale, and the fitting operation trains the model with the said data.
From your question it sounds like you thought these two operations were mutually exclusive, or somehow equivalent, but they are actually logical consecutive steps.
In general, before model is trained, data is somehow preprocessed (with .scale() in this case), then trained. In sklearn the .fit() methods are for training (fitting functions/models to the data).
Hope it makes sense!
Scale is a data normalization technique and it is used when data in different features are of not similar values like in one feature you have values ranging from 1 to 10 and in other features you have values ranging from 1000 to 10000.
Where as fit is the function that actually starts your model training
Scaling is conversion of data, a method used to normalize the range of independent variables or features of data. The fit method is a training step.

Improving linear regression model by taking absolute value of predicted output?

I have a particular classification problem that I was able to improve using Python's abs() function. I am still somewhat new when it comes to machine learning, and I wanted to know if what I am doing is actually "allowed," so to speak, for improving a regression problem. The following line describes my method:
lr = linear_model.LinearRegression()
predicted = abs(cross_val_predict(lr, features, labels_postop_IS, cv=10))
I attempted this solution because linear regression can sometimes produce negative predictions values, even though my particular case, these predictions should never be negative, as they are a physical quantity.
Using the abs() function, my predictions produce a better fit for the data.
Is this allowed?
Why would it not be "allowed". I mean if you want to make certain statistical statements (like a 95% CI e.g.) you need to be careful. However, most ML practitioners do not care too much about underlying statistical assumptions and just want a blackbox model that can be evaluated based on accuracy or some other performance metric. So basically everything is allowed in ML, you just have to be careful not to overfit. Maybe a more sensible solution to your problem would be to use a function that truncates at 0 like f(x) = x if x > 0 else 0. This way larger negative values don't suddenly become large positive ones.
On a side note, you should probably try some other models as well with more parameters like a SVR with a non-linear kernel. The thing is obviously that a LR fits a line, and if this line is not parallel to your x-axis (thinking in the single variable case) it will inevitably lead to negative values at some point on the line. That's one reason for why it is often advised not to use LRs for predictions outside the "fitted" data.
A straight line y=a+bx will predict negative y for some x unless a>0 and b=0. Using logarithmic scale seems natural solution to fix this.
In the case of linear regression, there is no restriction on your outputs.
If your data is non-negative (as in your case the values are physical quantities and cannot be negative), you could model using a generalized linear model (GLM) with a log link function. This is known as Poisson regression and is helpful for modeling discrete non-negative counts such as the problem you described. The Poisson distribution is parameterized by a single value λ, which describes both the expected value and the variance of the distribution.
I cannot say your approach is wrong but a better way is to go towards the above method.
This results in an approach that you are attempting to fit a linear model to the log of your observations.

Sklearn overfitting

I have a data set containing 1000 points each with 2 inputs and 1 output. It has been split into 80% for training and 20% for testing purpose. I am training it using sklearn support vector regressor. I have got 100% accuracy with training set but results obtained with test set are not good. I think it may be because of overfitting. Please can you suggest me something to solve the problem.
You may be right: if your model scores very high on the training data, but it does poorly on the test data, it is usually a symptom of overfitting. You need to retrain your model under a different situation. I assume you are using train_test_split provided in sklearn, or a similar mechanism which guarantees that your split is fair and random. So, you will need to tweak the hyperparameters of SVR and create several models and see which one does best on your test data.
If you look at the SVR documentation, you will see that it can be initiated using several input parameters, each of which could be set to a number of different values. For the simplicity, let's assume you are only dealing with two parameters that you want to tweak: 'kernel' and 'C', while keeping the third parameter 'degree' set to 4. You are considering 'rbf' and 'linear' for kernel, and 0.1, 1, 10 for C. A simple solution is this:
for kernel in ('rbf', 'linear'):
for c in (0.1, 1, 10):
svr = SVR(kernel=kernel, C=c, degree=4)
svr.fit(train_features, train_target)
score = svr.score(test_features, test_target)
print kernel, c, score
This way, you can generate 6 models and see which parameters lead to the best score, which will be the best model to choose, given these parameters.
A simpler way is to let sklearn to do most of this work for you, using GridSearchCV (or RandomizedSearchCV):
parameters = {'kernel':('linear', 'rbf'), 'C':(0.1, 1, 10)}
clf = GridSearchCV(SVC(degree=4), parameters)
clf.fit(train_features, train_target)
print clf.best_score_
print clf.best_params_
model = clf.best_estimator_ # This is your model
I am working on a little tool to simplify using sklearn for small projects, and make it a matter of configuring a yaml file, and letting the tool do all the work for you. It is available on my github account. You might want to take a look and see if it helps.
Finally, your data may not be linear. In that case you may want to try using something like PolynomialFeatures to generate new nonlinear features based on the existing ones and see if it improves your model quality.
Try fitting your data using training data split Sklearn K-Fold cross-validation, this provides you a fair split of data and better model , though at a cost of performance , which should really matter for small dataset and where the priority is accuracy.
A few hints:
Since you have only two inputs, it would be great if you plot your data. Try either a scatter with alpha = 0.3 or a heatmap.
Try GridSearchCV, as mentioned by #shahins.
Especially, try different values for the C parameter. As mentioned in the docs, if you have a lot of noisy observations you should decrease it. It corresponds to regularize more the estimation.
If it's taking too long, you can also try RandomizedSearchCV
As a side note from #shahins answer (I am not allowed to add comments), both implementations are not equivalent. GridSearchCV is better since it performs cross-validation in the training set for tuning the hyperparameters. Do not use the test set for tuning hyperparameters!
Don't forget to scale your data

How to consistently standardize sparse feature matrix in scikit-learn?

I am using sklearn's DictVectorizer to construct a large, sparse feature matrix, which is fed to an ElasticNet model. Elastic net (and similar linear models) work best when predictors (columns in the feature matrix) are centered and scaled. The recommended approach is to build a Pipeline that uses a StandardScaler prior to the regressor, however that doesn't work with sparse features, as stated in the docs.
I thought to use the normalize=True flag in ElasticNet which seems to support sparse data, however it's not clear whether the normalization is applied during prediction to the test data as well. Does anyone know if normalize=True applies for prediction as well? If not, is there a way to use the same standardization on the training and test set when dealing with sparse features?
Digging through the sklearn code, it looks like when fit_intercept=True and normalize=True, the coefficients estimated on the normalized data are projected back to the original scale of the data. This is similar to the way glmnet in R handles standardization. The relevant code snippet is the method _set_intercept of LinearModel, see https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/linear_model/base.py#L158. So predictions on unseen data use coefficients in the original scale, i.e., normalize=True is safe to use.

Setting feature weights for KNN

I am working with sklearn's implementation of KNN. While my input data has about 20 features, I believe some of the features are more important than others. Is there a way to:
set the feature weights for each feature when "training" the KNN learner.
learn what the optimal weight values are with or without pre-processing the data.
On a related note, I understand generally KNN does not require training but since sklearn implements it using KDTrees, the tree must be generated from the training data. However, this sounds like its turning KNN into a binary tree problem. Is that the case?
Thanks.
kNN is simply based on a distance function. When you say "feature two is more important than others" it usually means difference in feature two is worth, say, 10x difference in other coords. Simple way to achive this is by multiplying coord #2 by its weight. So you put into the tree not the original coords but coords multiplied by their respective weights.
In case your features are combinations of the coords, you might need to apply appropriate matrix transform on your coords before applying weights, see PCA (principal component analysis). PCA is likely to help you with question 2.
The answer to question to is called "metric learning" and currently not implemented in Scikit-learn. Using the popular Mahalanobis distance amounts to rescaling the data using StandardScaler. Ideally you would want your metric to take into account the labels.

Resources