Implications of keeping Cassandra ResultSet open for a while - cassandra

I'm using Cassandra Java driver with a fetch size set to 1k. I need to query all records in a table and perform some time consuming action for a every row.
What will happen if I'll keep the ResultSet open (not fully iterated) for a one day?
What I don't care about:
consistency. If some new record will be written in the meantime, I'm ok to fetch it. However, I'm fine if I won't get it
fault tolerance. If during that process some node will fail, I'm fine if the query will fail too. However, I would like to detect that from the client perspective.
What I care about:
Cassandra resource utilization - I don't want to cause cluster outage due to some blocked resources
lateness - I don't want to block (or slow down much) cluster for other consumers of that table
I would like to get all records which existed when I started the query (assuming no deletions). However, they don't have to be up to date

The paging state is the information about the last read data (literally serialized partition key, clustering, and remaining). When sent to coordinator it will look for everything greater than that. So there are no resources in the server spent for this and no performance impact vs a normal read.
Cassandra does not have any features to allow isolation even within a single query. If data has changed from when the first query was made and the second, you will get the up to date information.

Related

Parallel read and write to postgres database slows down application (backend)

I have a backend in nestjs using typeorm and postgres. This backend saves and reads data frequently from the database. In this database we are dealing with row counts of 10k + at times that needs to get updated and saved or created.
In this particular case where I need some brain juice I have a table (lets call it table a)
the backend fetches data from table a every few seconds
the content in table A needs to get updated frequently (properties and values overwritten). I am doing this updating task from a several application backend solely for this use-case.
Example case
Table A holds 100K records
update-service splits these 100K records into chunks of 5 and parallell updates 25K records each. While doing so, the main application that retrieves data from the backend slows down.
What is the best way to have performant read and write in parallel? I am assuming the slow down comes from locks (main backend retrieves data while update service tries to update) but I am not sure as I have not that much experience working with databases.
Don't assume, assert.
While you experiencing bad performance, check how the operating system's resources are doing; in this case, mostly CPU and disk. If one of them is maxed out, you know what is going on, and you either have to reduce the degree of parallelism or make the system stronger.
It is also interesting to look at wait events in PostgreSQL:
SELECT wait_event_type, wait_event, count(*)
FROM pg_stat_activity
WHERE state = 'active'
GROUP BY wait_event_type, wait_event;
That will show I/O related events if you are running out of disk bandwidth, but it will also show database-internal contention that you can potentially hit with very high degrees of parallelism.

Could my large amount of tables (2k+) be causing my write timeout exceptions?

I'm running OS Cassandra 3.11.9 with Datastax Java Driver 3.8.0. I have a Cassandra keyspace that has multiple tables functioning as lookup tables / search indices. Whenever I receive a new POST request to my endpoint, I parse the object and insert it in the corresponding Cassandra table. I also put inserts to each corresponding lookup table. (10-20 per object)
When ingesting a lot of data into the system, I've been running into WriteTimeoutExceptions in the driver.
I tried to serialize the insert requests into the lookup tables by introducing Apache Camel and putting all the Statements into a queue that the Session could work off of, but it did not help.
With Camel, since the exceptions are now happening in the Camel thread, the test continues to run, instead of failing on the first exception. Eventually, the test seems to crash Cassandra. (Nothing in the Cassandra logs though)
I also tried to turn off my lookup tables and instead insert into the main table 15x per object (to simulate a similar number of writes as if I had the lookup tables on). This test passed with no exception, which makes me think the large number of tables is the problem.
Is a large number (2k+) of Cassandra tables a code smell? Should we rearchitect or just throw more resources at it? Nothing indicative has shown in the logs, mostly just some status about the number of tables etc - no exceptions)
Can the Datastax Java Driver be used multithreaded like this? It says it is threadsafe.
There is a direct effect of the high number of tables onto the performance - see this doc (the whole series is good source of information), and this blog post for more details. Basically, with ~1000 tables, you get ~20-25% degradation of performance.
That's could be a reason, not completely direct, but related. For each table, Cassandra needs to allocate memory, have a part for it in the memtable, keep information about it, etc. This specific problem could come from the blocked memtable flushes, or something like. Check the nodetool tpstats and nodetool tablestats for blocked or pending memtable flushes. It's better to setup some continuous monitoring solution, such as, metrics collector for Apache Cassandra, and and for period of time watch for the important metrics that include that information as well.

Select All Performance in Cassandra

I'm current using DB2 and planning to use cassandra because as i know cassandra have a read performance greater than RDBMS.
May be this is a stupid question but I have experiment that compare read performance between DB2 and Cassandra.
Testing with 5 million records and same table schema.
With query SELECT * FROM customer. DB2 using 25-30s and Cassandra using 40-50s.
But query with where condition SELECT * FROM customer WHERE cusId IN (100,200,300,400,500) DB2 using 2-3s and Cassandra using 3-5ms.
Why Cassandra faster than DB2 with where condition? So i can't prove which database is greater with SELECT * FROM customer right?
FYI.
Cassandra: RF=3 and CL=1 with 3 nodes each node run on 3 computers (VM-Ubuntu)
DB2: Run on windows
Table schema:
cusId int PRIMARY KEY, cusName varchar
If you look at the types of problems that Cassandra is good at solving, then the reasons behind why unbound ("Select All") queries suck become quite apparent.
Cassandra was designed to be a distributed data base. In many Cassandra storage patterns, the number of nodes is greater than the replication factor (I.E., not all nodes contain all of the data). Therefore, limiting the number of network hops becomes essential to modeling high-performing queries. Cassandra performs very well with specific queries (which utilize the partition/clustering key structure), because it can quickly locate the node primarily responsible for the data.
Unbound queries (A.K.A. multi-key queries) incur the extra network time because a coordinator node is required. So one node acts as the coordinator, queries all other nodes, collates data, and returns the result set. Specifying a WHERE clause (with at least a partition key) and while using a "Token Aware" load balancing policy, performs well for two reasons:
A coordinator node is not required.
The node primarily responsible for the range is queried, returning the result set in a single netowrk hop.
tl;dr;
Querying Cassandra with an unbound query, causes it to incur a lot of extra processing and network time that it normally wouldn't have to do, had the query been specified with a WHERE clause.
Even as a troublesome query like a no-condition range query, 40-50s is pretty extreme for C*. Is the coordinator hitting GCs with the coordination? Can you include code used for your test?
When you make a select * vs millions of records, it wont fetch them all at once, it will grab the fetchSize at a time. If your just iterating through this, the iterator will actually block even if you used executeAsync initially. This means that every 10k (default) records it will issue a new query that you will block on. The serialized nature of this will take time just from a network perspective. http://docs.datastax.com/en/developer/java-driver/3.1/manual/async/#async-paging explains how to do it in a non-blocking way. You can use this to to kick off the next page fetch while processing the current which would help.
Decreasing the limit or fetch size could also help, since the coordinator may walk token ranges (parallelism is possible here but its heuristic is not perfect) one at a time until it has read enough. If it has to walk too many nodes to respond it will be slow, this is why empty tables can be very slow to do a select * on, it may serially walk every replica set. With 256 vnodes this can be very bad.

What is the best way to query timeseries data with cassandra?

My table is a time series one. The queries are going to process the latest entries and TTL expire them after successful processing. If they are not successfully processed, TTL will not set.
The only query I plan to run on this is to select all entries for a given entry_type. They will be processed and records corresponding to processed entries will be expired.
This way every time I run this query I will get all records in the table that are not processed and processing will be done. Is this a reasonable approach?
Would using a listenablefuture with my own executor add any value to this considering that the thread doing the select is just processing.
I am concerned about the TTL and tombstones. But if I use clustering key of timeuuid type is this ok?
You are right one important thing getting in your way will be tombstones. By Default you will keep them around for 10 days. Depending on your access patter this might cause significant problems. You can lower this by setting the directly on the table or change it in the cassandra yaml file. Then it will be valid for all the newly created table gc_grace_seconds
http://docs.datastax.com/en/cql/3.1/cql/cql_reference/tabProp.html
It is very important that you make sure you are running the repair on whole cluster once within this period. So if you lower this setting to let's say 2 days, then within two days you have to have one full repair done on the cluster. This is very important because processed data will reaper. I saw this happening multiple times, and is never pleasant especially if you are using cassandra as a queue and it seems to me that you might be using it in your solution. I'll try to give some tips at the end of the answer.
I'm slightly worried about you setting the ttl dynamically depending on result. What would be the point of inserting the ttl-ed data that was successful and keeping forever the data that wasn't. I guess some sort of audit or something similar. Again this is a queue pattern, try to avoid this if possible. Also one thing to keep in mind is that you will almost always insert the data once in the beginning and then once again with the ttl should your processing be o.k.
Also getting all entries might be a bit tricky. For very moderate load 10-100 req/s this might be reasonable but if you have thousands per second getting all the requests every time might not be a good idea. At least not if you put them into single partition.
Separating the workload is also good idea. So yes using listenable future seems totally legit.
Setting clustering key to be timeuuid is usually the case with time series thata and I totally agree with you on this one.
In reality as I mentioned earlier you have to to take into account you will be saving 10 days worth of data (unless you tweak it) no matter what you do, it doesn't matter if you ttl it. It's still going to be ther, and every time cassandra will scan the partition will have to read the ttl-ed columns. In short this is just pain. I would seriously consider actually using something as kafka if I were you because what you are describing simply looks to me like a queue.
If you still want to stick with cassandra then please consider using buckets (adding date info to partitioning key and having a composite partitioning key). Depending on the load you are expecting you will have to bucket by month, week, day, hour even minutes. In some cases you might even want to add artificial columns to reduce load on the cluster. But then again this might be out of scope of this question.
Be very careful when using cassandra as a queue, it's a known antipattern. You can do it, but there are a lot of variables and it extremely depends on the load you are using. I once consulted a team that sort of went down the path of cassandra as a queue. Since basically using cassandra there was a must I recommended them bucketing the data by day (did some calculations that proved this is o.k. time unit) and I also had a look at this solution https://github.com/paradoxical-io/cassieq basically there are a lot of good stuff in this repo when using cassandra as a queue, data models etc. Basically this team had zombie rows, slow reading because of the tombstones etc. etc.
Also the way you described it it might happen that you have "hot rows" basically since you would just have one wide partition where all your data would go some nodes in the cluster might not even be that good utilised. This can be avoided by artificial columns.
When using cassandra as a queue it's very easy to mess a lot of things up. (But it's possible for moderate workloads)

Mongodb, can i trigger secondary replication only at the given time or manually?

I'm not a mongodb expert, so I'm a little unsure about server setup now.
I have a single instance running mongo3.0.2 with wiredtiger, accepting both read and write ops. It collects logs from client, so write load is decent. Once a day I want to process this logs and calculate some metrics using aggregation framework, data set to process is something like all logs from last month and all calculation takes about 5-6 hours.
I'm thinking about splitting write and read to avoid locks on my collections (server continues to write logs while i'm reading, newly written logs may match my queries, but i can skip them, because i don't need 100% accuracy).
In other words, i want to make a setup with a secondary for read, where replication is not performing continuously, but starts in a configured time or better is triggered before all read operations are started.
I'm making all my processing from node.js so one option i see here is to export data created in some period like [yesterday, today] and import it to read instance by myself and make calculations after import is done. I was looking on replica set and master/slave replication as possible setups but i didn't get how to config it to achieve the described scenario.
So maybe i wrong and miss something here? Are there any other options to achieve this?
Your idea of using a replica-set is flawed for several reasons.
First, a replica-set always replicates the whole mongod instance. You can't enable it for individual collections, and certainly not only for specific documents of a collection.
Second, deactivating replication and enabling it before you start your report generation is not a good idea either. When you enable replication, the new slave will not be immediately up-to-date. It will take a while until it has processed the changes since its last contact with the master. There is no way to tell how long this will take (you can check how far a secondary is behind the primary using rs.status() and comparing the secondaries optimeDate with its lastHeartbeat date).
But when you want to perform data-mining on a subset of your documents selected by timespan, there is another solution.
Transfer the documents you want to analyze to a new collection. You can do this with an aggregation pipeline consisting only of a $match which matches the documents from the last month followed by an $out. The out-operator specifies that the results of the aggregation are not sent to the application/shell, but instead written to a new collection (which is automatically emptied before this happens). You can then perform your reporting on the new collection without locking the actual one. It also has the advantage that you are now operating on a much smaller collection, so queries will be faster, especially those which can't use indexes. Also, your data won't change between your aggregations, so your reports won't have any inconsistencies between them due to data changing between them.
When you are certain that you will need a second server for report generation, you can still use replication and perform the aggregation on the secondary. However, I would really recommend you to build a proper replica-set (consisting of primary, secondary and an arbiter) and leave replication active at all times. Not only will that make sure that your data isn't outdated when you generate your reports, it also gives you the important benefit of automatic failover should your primary go down for some reason.

Resources