Vector Space plus Matrix as category - haskell

I try to understand what is category in Haskell with Vector Space.
I draw a picture, can anyone review it for me.
I'm not sure this is good/right picture for category.

One thing that's perhaps not quite accurate in your picture: it's important that the objects are vector spaces (not vectors!), whereas the morphisms are matrices (I prefer to say, linear mappings. These are single entities at any rate, not “spaces of matrices”). And while matrices are themselves elements of vector spaces, a matrix is not a vector space but just a single vector. So, the “objects” bubbles should be changed to contain not matrices but sets of matrices. And, getting more into details: a linear mapping between spaces of 3×3 matrices would actually be a 9×9 matrix, not another 3×3 matrix (though it makes sense to see it as a (3×3)×(3×3) tensor).Apart from that, great! I think the category vector spaces is a very good entry point to category theory.
This does however not directly relate to “what is category in Haskell”, except insofar as categories in Haskell also obey the category laws. If you just wanted to understand these laws by some example to grok categories in general and ultimately also use them in Haskell – fair.
But if you actually want to use particular categories such as Vectk themselves in Haskell, that's a bit more of a tricky story because what most people call “categories in Haskell” are actually way too weak: they require that all Haskell types can be objects. But most types can't sensibly be seen as vector spaces, so you need a more nuanced notion of category. This is provided by the subhask library or my own constrained-categories. Both have been used to implement the category of vector spaces:
http://hackage.haskell.org/package/subhask-0.1.1.0/docs/SubHask-Algebra-Vector.html
http://hackage.haskell.org/package/linearmap-category-0.3.4.0/docs/Math-LinearMap-Category.html

Related

How would I construct an integer optimization model corresponding to a graph

Suppose we're given some sort of graph where the feasible region of our optimization problem is given. For example: here is an image
How would I go on about constructing these constraints in an integer optimization problem? Anyone got any tips? Thanks!
Mate, I agree with the others that you should be a little more specific than that paint-ish picture ;). In particular you are neither specifying any objective/objective direction nor are you giving any context, what about this graph should be integer-variable related, except for the existence of disjunctive feasible sets, which may be modeled by MIP-techniques. It seems like your problem is formalization of what you conceptualized. However, in case you are just being lazy and are just interested in modelling disjunctive regions, you should be looking into disjunctive programming techniques, such as "big-M" (Note: big-M reformulations can be problematic). You should be aiming at some convex-hull reformulation if you can attain one (fairly easily).
Back to your picture, it is quite clear that you have a problem in two real dimensions (let's say in R^2), where the constraints bounding the feasible set are linear (the lines making up the feasible polygons).
So you know that you have two dimensions and need two real continuous variables, say x[1] and x[2], to formulate each of your linear constraints (a[i,1]*x[1]+a[i,2]<=rhs[i] for some index i corresponding to the number of lines in your graph). Additionally your variables seem to be constrained to the first orthant so x[1]>=0 and x[2]>=0 should hold. Now, to add disjunctions you want some constraints that only hold when a certain condition is true. Therefore, you can add two binary decision variables, say y[1],y[2] and an additional constraint y[1]+y[2]=1, to tell that only one set of constraints can be active at the same time. You should be able to implement this with the help of big-M by reformulating the constraints as follows:
If you bound things from above with your line:
a[i,1]*x[1]+a[i,2]-rhs[i]<=M*(1-y[1]) if i corresponds to the one polygon,
a[i,1]*x[1]+a[i,2]-rhs[i]<=M*(1-y[2]) if i corresponds to the other polygon,
and if your line bounds things from below:
-M*(1-y[1])<=-a[i,1]*x[1]-a[i,2]+rhs[i] if i corresponds to the one polygon,
-M*(1-y[1])<=-a[i,1]*x[1]-a[i,2]+rhs[i] if i corresponds to the other polygon.
It is important that M is sufficiently large, but not too large to cause numerical issues.
That being said, I am by no means an expert on these disjunctive programming techniques, so feel free to chime in, add corrections or make things clearer.
Also, a more elaborate question typically yields more elaborate and satisfying answers ;) If you had gone to the effort of making up a true small example problem you likely would have gotten a full formulation of your problem or even an executable piece of code in no time.

How would you implement a heuristic search in Haskell?

In Haskell or some other functional programming language, how would you implement a heuristic search?
Take as an example search space, the nine-puzzle, that is a 3x3 grid with 8 tiles and 1 hole, and you move tiles into the hole until you have correctly assembled a picture. The heuristic is the "Manhattan heuristic", which evaluates a board position adding up the distance each tile is from its target position, taking as the distance the number of squares horizontally plus the number of squares vertically each tile needs to be moved to get to the correct location.
I have been reading John Hughes paper on pretty printing as I know that pretty printer back-tracks to find better solutions. I am trying to understand how to generalise a heuristic search along these lines.
===
Note that my ultimate aim here is not to write a solver for the 9-puzzle, but to learn some general techniques for writing efficient heuristic searches in FP languages. I am also interested to learn if there is code that can be generalised and re-used across a wider class of such problems, rather than solving any specific problem.
For example, a search space can be characterised by a function that maps a State to a List of States together with some 'operation' that describes how one state is transitioned into another. There could also be a goal function, mapping a State to Bool, indicating when a goal State has been reached. And of course, the heuristic function mapping a State to a Number reflecting how well it is estimated to score. Other descriptions of the search are possible.
I don't think it's necessarily very specific to FP or Haskell (unless you utilize lists as "multiple possibility" monads, as in Learn You A Haskell For Great Good).
One way to do it would be by writing a recursive function taking the following:
the current state (that is the board configuration)
possibly some path metadata, e.g., the number of steps from the initial configuration (which is just the recursion depth), or a memoization-map of all the states already considered
possibly some decision, metadata, e.g., a pesudo-random number generator
Within each recursive call, the function would take the state, and check if it is the required result. If not it would
if it uses a memoization map, check if a choice was already considered
If it uses a recursive-step count, check whether to pursue the choices further
If it decides to recursively call itself on the possible choices emanating from this state (e.g., if there are different tiles which can be pushed into the hole), it could do so in the order based on the heuristic (or possibly pseudo-randomly based on the order based on the heuristic)
The function would return whether it succeeded, and, if they are used, updated versions of the memoization map and/or pseudo-random number generator.

Haskell - What data structure to use for a sparse matrix multiply?

Using Haskell, I am doing exercises on HackerRank in order to familiarize myself with the language. For the particular problem I am currently doing, I will have to do a matrix multiply. Unlike in Python where I could just use Numpy, I've checked on Ideone and it seems Haskell does not have any linear algebra packages plugged in, so I am going to do it by hand. If I was doing this problem in F# I would just use a plain array, but in Haskell I am not sure as it has various array classes. I am looking for some advice on what I should be looking into here as I have a total of three days experience in the language so far.
I am also wondering whether tuples are stack or heap allocated in Haskell as I might have to use them to encode (index,value) positions.
To answer my own question, the goto class in Haskell for plain arrays would be the Data.Vector.Unboxed. Haskell has a distinction between boxed and unboxed arrays, and even though I knew that it still somehow surprised me that in a vector of vectors, the outer vector would have to be a boxed type.
Also regarding tuples, per documentation for efficiency a vector of tuples will get compiled as tuple of vectors which definitely means that the elements will get allocated to a contiguous area on the heap.

efficient functional data structure for finite bijections

I'm looking for a functional data structure that represents finite bijections between two types, that is space-efficient and time-efficient.
For instance, I'd be happy if, considering a bijection f of size n:
extending f with a new pair of elements has complexity O(ln n)
querying f(x) or f^-1(x) has complexity O(ln n)
the internal representation for f is more space efficient than having 2 finite maps (representing f and its inverse)
I am aware of efficient representation of permutations, like this paper, but it does not seem to solve my problem.
Please have a look at my answer for a relatively similar question. The provided code can handle general NxM relations, but also be specialized to just bijections (just as you would for a binary search tree).
Pasting the answer here for completeness:
The simplest way is to use a pair of unidirectional maps. It has some cost, but you won't get much better (you could get a bit better using dedicated binary trees, but you have a huge complexity cost to pay if you have to implement it yourself). In essence, lookups will be just as fast, but addition and deletion will be twice as slow. Which isn't so bad for a logarithmic operation. Another advantage of this technique is that you can use specialized maps types for the key or value type if you have one available. You won't get as much flexibility with a specific generalist data structure.
A different solution is to use a quadtree (instead of considering a NxN relation as a pair of 1xN and Nx1 relations, you see it as a set of elements in the cartesian product (Key*Value) of your types, that is, a spatial plane), but it's not clear to me that the time and memory costs are better than with two maps. I suppose it needs to be tested.
Although it doesn't satisfy your third requirement, bimaps seem like the way to go. (They just make two finite maps, one in each direction, convenient to use.)

Converting graph to canonical string

I'm looking for a way of storing graphs as strings. The strings are to be used as keys in a map, so that two topologically identical graphs will map to the same value in the map. Does anybody know of such an algorithm?
The nodes of the tree are labeled with duplicate labels being allowed.
The program is in java and an implementation in that would be neat, but any pointers to possible algorithms are appreciated.
if you have an algorithm that maps general graphs to strings, and so that two graphs map to the same string if and only if they are topologically equivalent, then you have an algorithm for GRAPH AUTOMORPHISM. Graph automorphism has no known polynomial-time algorithms. So you can't have (easily :) a polynomial-time algorithm that calculates the strings as you postulate them, because otherwise you'd have constructed a previously unknown and very efficient algorithm to graph automorphism.
This doesn't mean that it wouldn't be possible to solve the problem for your class of graphs; it just means that for the class of all graphs it's kind of difficult.
You may find the following question relevant...
Using finite automata as keys to a container
Basically, an automaton can be minimised using well-known algorithms from automata-theory textbooks. Hopcrofts is an example. There is precisely one minimal automaton that is equivalent to any given automaton. However, that minimal automaton may be represented in different ways. Constructing a safe canonical form is basically a matter of renumbering nodes and ordering the adjacency table using information that is significant in defining the automaton, and not by information that is specific to the representation.
The basic principle should extend to general graphs. Whether you can minimise your graphs depends on their semantics, but the basic idea of renumbering the nodes and sorting the adjacency list still applies.
Other answers here assume things about your graphs - for example that the nodes have unique labels that can be ordered and which are significant for the semantics of your graphs, that can be used to identify the nodes in an adjacency matrix or list. This simply won't work if you're interested in morphims of unlabelled graphs, for instance. Different ways of numbering the nodes (and thus ordering the adjacency list) will result in different canonical forms for equivalent graphs that just happen to be represented differently.
As for the renumbering etc, an approach is to borrow and adapt principles from automata minimisation algorithms. Basically...
Create a vector of blocks (sets of nodes). Initially, populate this with one block per class of nodes (ie per distinct node annotation). The modification here is that we order these by annotation details (not by representation-specific node IDs).
For each class (annotation) of edges in order, evaluate each block. If each node in the block can follow the current edge-type to reach the same set of next blocks, leave it untouched. Otherwise, split it as necessary to get maximal blocks that achieve this objective. Keep these split blocks clustered together in the vector (preserve the existing ordering, just refine it a bit), and order the split blocks based on a suitable ordering of the next-block sets. For example, use bitvectors as long as the current vector of blocks, with a set bit for each block reachable by following the current edge type. To order the bitvectors, treat them as big integers.
EDIT - I forgot to mention - in the second bullet, as soon as you split a block, you restart with the first block in the vector and first edge annotation. Obviously, a naive implementation will be slow, so take the principle and use it to adapt Hopcrofts minimisation algorithm.
If you end up with blocks that have multiple nodes in them, those nodes are equivalent. Whether that means they can be merged or not depends on your semantics, but the relative ordering of nodes within each such block clearly doesn't matter.
If dealing with graphs that can be minimised (e.g. automaton digraphs) I suspect it's best to minimise first, though I still haven't got around to implementing this myself.
The key thing is, of course, ensuring that your renumbering is sensitive only to the significant details of the graph - its structure and annotations - and not the things that are only there so that you can construct a representation such as node IDs/addresses etc.
Once you have the blocks ordered, deriving a canonical form should be easy.
gSpan introduced the 'minimum DFS code' which encodes graphs such that if two graphs have the same code, they must be isomorphic. gSpan has implementations in C++ and Java.
A common way to do this is using Adjacency lists
Beside an Adjacency list, there are adjacency matrices. Which one you choose should depend on which you use to implement your Graph class (adjacency lists are usually the better choice, but they both have strengths and weaknesses). If you have a totally different implementation of Graph, consider using one of these, as it makes many graph algorithms very easy to implement.
One other option is, if possible, overriding hashCode() and equals() on the Graph class and use the actual graph object as the key rather than converting to a string.
E: overriding the hashCode() and equals() is the route I would take if some vertices are not uniquely labeled. As noted in the comments, this can be expensive, but I think it would depend on the implementation of the Graph class.
If equals() is too expensive, then you should use an adjacency list or matrix, but don't just use the node names. You have to carefully specify exactly what it is that identifies individual graphs and vertices (and therefore what would make them equal), and then make your string representation of the adjacency list use those properties instead of the node names. I'd suggest you write this specification of your graph equals operation down.

Resources