I'm developing my first game with SpriteKit and I need to shoot a laser beam. I don't know how to do this since I don't know the size of the laser sprite, does it have to be with size of the screen height and crop the image when a collision is detected? can anyone point me to the right directions please? Have no idea about this XD
Thanks for your comments :D
This could be done by line-of-sight detection system described here in the section Searching for physics bodies :
Useful method would be enumerateBodiesAlongRayStart:end:usingBlock: from SKPhysicsWorld class which enumerates all the physics bodies in the scene that intersect a ray.
Basically you have to set start point and search for end point using the method above.When you know where is the intersection point(end point of laser beam) you can easily draw it.
This is a way late response, but I've got a really nice solution. Here's what it looks like (Swift 3):
In my code I'm calling this when I rotate the node I want the laser to shoot out of:
self.laser = SKShapeNode()
laser.lineWidth = 6
laser.glowWidth = 8
laser.strokeColor = .red
let _ = isTargetVisibleAtAngle(startPoint: startPoint, angle: selectedBeam!.zRotation + (CGFloat.pi / 2), distance: frame.size.height)
And this is the method. Obviously you put in whatever angle you want. The "foundOne" thing is so that it stops on the first object if that ray crosses through multiple targets
func isTargetVisibleAtAngle(startPoint: CGPoint, angle: CGFloat, distance: CGFloat) -> Bool {
let rayStart = startPoint
let rayEnd = CGPoint(x: rayStart.x + distance * cos(angle),
y: rayStart.y + distance * sin(angle))
let path = CGMutablePath()
path.move(to: rayStart)
path.addLine(to: rayEnd)
laser.path = path
var foundOne = false
let _ = physicsWorld.enumerateBodies(alongRayStart: rayStart, end: rayEnd) { (body, point, vector, stop) in
if !foundOne {
foundOne = true
let p = CGMutablePath()
p.move(to: rayStart)
p.addLine(to: point)
self.laser.path = p
}
}
return false
}
Is there a way to fill a closed drawn path in easeljs? I have along string of mt(x_t,y_t).lt(x_(t+1),y_(t+1)) that draws a wacky shape. the shape closes off, but I can't find a way to have it actually fill in the closed area. Any ideas?
T is how many coordinates there are to connect, [round.X, round.Y] is the Tx2 array of coordinate pairs, ghf is the graphics object. xline.y is just a the lowest y value.
for(var i=0;i<T;i++){
x0 = round.X[i];
y0 = round.Y[i];
// scale for drawing
px0 = Math.round(xscale * x0);
py0 = Math.round(yscale * y0) + xline.y;
if(x0>gp.xmin){ // if not first point ...
ghf.mt(prevx,prevy).lt(px0,py0); // draw line from prev point to this point
}
// set this point as prev point
prevx = px0;
prevy = py0;
}
// fill out thing
ghf.mt(prevx,prevy).lt(px0,xline.y);
ghf.mt(px0,xline.y).lt(0,xline.y);
x0 = round.X[0];
y0 = round.Y[0];
px0 = Math.round(xscale * x0);
py0 = Math.round(yscale * y0) + xline.y;
ghf.mt(0,xline.y).lt(px0,py0);
ghf.f('red');
Your code is not very helpful, but I think what you need is the beginFill method. See link.
You can use it like this:
var ball = new createjs.Shape();
ball.graphics.setStrokeStyle(5, 'round', 'round');
ball.graphics.beginStroke(('#000000'));
ball.graphics.beginFill("#FF0000").drawCircle(0,0,50);
ball.graphics.endStroke();
ball.graphics.endFill();
ball.graphics.setStrokeStyle(1, 'round', 'round');
ball.graphics.beginStroke(('#000000'));
ball.graphics.moveTo(0,0);
ball.graphics.lineTo(0,50);
I am thinking of stretching/collapsing the canvas grid using input fields. I tried the grid.js also. But this is not for fabric js, though i tried hard.
Is it possible to stretch/collapse the canvas grid by user input?
I have come up with a solution using some other guys solution those I did find in jsfiddle but I cannot find that reference link right now. I just have customized that solution to work with my code. Thanks to that guy. Here is my solution -
function draw_grid(grid_size) {
grid_size || (grid_size = 25);
currentCanvasWidth = canvas.getWidth();
currentcanvasHeight = canvas.getHeight();
// Drawing vertical lines
var x;
for (x = 0; x <= currentCanvasWidth; x += grid_size) {
this.grid_context.moveTo(x + 0.5, 0);
this.grid_context.lineTo(x + 0.5, currentCanvasHeight);
}
// Drawing horizontal lines
var y;
for (y = 0; y <= currentCanvasHeight; y += grid_size) {
this.grid_context.moveTo(0, y + 0.5);
this.grid_context.lineTo(currentCanvasWidth, y + 0.5);
}
grid_size = grid_size;
this.grid_context.strokeStyle = "black";
this.grid_context.stroke();
}
I hope this will someone someday.
I'm learning DirectX, using the book "Sherrod A., Jones W. - Beginning DirectX 11 Game Programming - 2011" Now I'm exploring the 4th chapter about drawing text.
Please, help we to fix my function, that I'm using to draw a string on the screen. I've already loaded font texture and in the function I create some sprites with letters and define texture coordinates for them. This compiles correctly, but doesn't draw anything. What's wrong?
bool DirectXSpriteGame :: DrawString(char* StringToDraw, float StartX, float StartY)
{
//VAR
HRESULT D3DResult; //The result of D3D functions
int i; //Counters
const int IndexA = static_cast<char>('A'); //ASCII index of letter A
const int IndexZ = static_cast<char>('Z'); //ASCII index of letter Z
int StringLenth = strlen(StringToDraw); //Lenth of drawing string
float ScreenCharWidth = static_cast<float>(LETTER_WIDTH) / static_cast<float>(SCREEN_WIDTH); //Width of the single char on the screen(in %)
float ScreenCharHeight = static_cast<float>(LETTER_HEIGHT) / static_cast<float>(SCREEN_HEIGHT); //Height of the single char on the screen(in %)
float TexelCharWidth = 1.0f / static_cast<float>(LETTERS_NUM); //Width of the char texel(in the texture %)
float ThisStartX; //The start x of the current letter, drawingh
float ThisStartY; //The start y of the current letter, drawingh
float ThisEndX; //The end x of the current letter, drawing
float ThisEndY; //The end y of the current letter, drawing
int LetterNum; //Letter number in the loaded font
int ThisLetter; //The current letter
D3D11_MAPPED_SUBRESOURCE MapResource; //Map resource
VertexPos* ThisSprite; //Vertecies of the current sprite, drawing
//VAR
//Clamping string, if too long
if(StringLenth > LETTERS_NUM)
{
StringLenth = LETTERS_NUM;
}
//Mapping resource
D3DResult = _DeviceContext -> Map(_vertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &MapResource);
if(FAILED(D3DResult))
{
throw("Failed to map resource");
}
ThisSprite = (VertexPos*)MapResource.pData;
for(i = 0; i < StringLenth; i++)
{
//Creating geometry for the letter sprite
ThisStartX = StartX + ScreenCharWidth * static_cast<float>(i);
ThisStartY = StartY;
ThisEndX = ThisStartX + ScreenCharWidth;
ThisEndY = StartY + ScreenCharHeight;
ThisSprite[0].Position = XMFLOAT3(ThisEndX, ThisEndY, 1.0f);
ThisSprite[1].Position = XMFLOAT3(ThisEndX, ThisStartY, 1.0f);
ThisSprite[2].Position = XMFLOAT3(ThisStartX, ThisStartY, 1.0f);
ThisSprite[3].Position = XMFLOAT3(ThisStartX, ThisStartY, 1.0f);
ThisSprite[4].Position = XMFLOAT3(ThisStartX, ThisEndY, 1.0f);
ThisSprite[5].Position = XMFLOAT3(ThisEndX, ThisEndY, 1.0f);
ThisLetter = static_cast<char>(StringToDraw[i]);
//Defining the letter place(number) in the font
if(ThisLetter < IndexA || ThisLetter > IndexZ)
{
//Invalid character, the last character in the font, loaded
LetterNum = IndexZ - IndexA + 1;
}
else
{
LetterNum = ThisLetter - IndexA;
}
//Unwraping texture on the geometry
ThisStartX = TexelCharWidth * static_cast<float>(LetterNum);
ThisStartY = 0.0f;
ThisEndY = 1.0f;
ThisEndX = ThisStartX + TexelCharWidth;
ThisSprite[0].TextureCoords = XMFLOAT2(ThisEndX, ThisEndY);
ThisSprite[1].TextureCoords = XMFLOAT2(ThisEndX, ThisStartY);
ThisSprite[2].TextureCoords = XMFLOAT2(ThisStartX, ThisStartY);
ThisSprite[3].TextureCoords = XMFLOAT2(ThisStartX, ThisStartY);
ThisSprite[4].TextureCoords = XMFLOAT2(ThisStartX, ThisEndY);
ThisSprite[5].TextureCoords = XMFLOAT2(ThisEndX, ThisEndY);
ThisSprite += VERTEX_IN_RECT_NUM;
}
for(i = 0; i < StringLenth; i++, ThisSprite -= VERTEX_IN_RECT_NUM);
_DeviceContext -> Unmap(_vertexBuffer, 0);
_DeviceContext -> Draw(VERTEX_IN_RECT_NUM * StringLenth, 0);
return true;
}
Although the piece of code constructing the Vertex Array seems correct to me at first glance, it seems like you are trying to Draw your vertices with a Shader which has not been set yet !
It is difficult to precisely answer you without looking at the whole code, but I can guess that you will need to do something like that :
1) Create Vertex and Pixel Shaders by compiling them first from their respective buffers
2) Create the Input Layout description, which describes the Input Buffers that will be read by the Input Assembler stage. It will have to match your VertexPos structure and your shader structure.
3) Set the Shader parameters.
4) Only now you can Set Shader rendering parameters : Set the InputLayout, as well as the Vertex and Pixel Shaders that will be used to render your triangles by something like :
_DeviceContext -> Unmap(_vertexBuffer, 0);
_DeviceContext->IASetInputLayout(myInputLayout);
_DeviceContext->VSSetShader(myVertexShader, NULL, 0); // Set Vertex shader
_DeviceContext->PSSetShader(myPixelShader, NULL, 0); // Set Pixel shader
_DeviceContext -> Draw(VERTEX_IN_RECT_NUM * StringLenth, 0);
This link should help you achieve what you want to do : http://www.rastertek.com/dx11tut12.html
Also, I recommend you to set an IndexBuffer and to use the method DrawIndexed to render your triangles for performance reasons : It will allow the graphics adapter to store vertices in a vertex cache, allowing recently-used vertex to be fetched from the cache instead of reading it from the vertex buffer.
More about this concern can be found on MSDN : http://msdn.microsoft.com/en-us/library/windows/desktop/bb147325(v=vs.85).aspx
Hope this helps!
P.S : Also, don't forget to release the resources after using them by calling Release().
I have a g element that contains one or more path elements. As I mentioned in another question, I scale and translate the g element by computing a transform attribute so that it fits on a grid in another part of the canvas.
The calculation is done using the difference between two rectangles, the getBBox() from the g element and the rectangle around the grid.
Here is the question -- after I do the transform, I update the contents of the g element and call getBBox() again, without removing the transform. The resulting rectangle appears to be calculated without considering the transform. I would have expected it to reflect the change. Is this behavior consistent with the SVG specification? How do I get the bounding box of the transformed rectangle?
This, BTW, is in an HTML 5 document running in Firefox 4, if that makes any difference.
Update: Apparently this behavior seems pretty clearly in violation of the specification. From the text here at w3c:
SVGRect getBBox()
Returns the tight bounding box in current user space (i.e., after application of the ‘transform’ attribute, if any) on the geometry of all contained graphics elements, exclusive of stroking, clipping, masking and filter effects). Note that getBBox must return the actual bounding box at the time the method was called, even in case the element has not yet been rendered.
Am I reading this correctly? If so this seems to be an errata in the SVG implementation Firefox uses; I haven't had a chance to try any other. I would file a bug report if someone could point me to where.
People often get confused by the behavioral difference of getBBox and getBoundingClientRect.
getBBox is a SVG Element's native method as equivalent to find the offset/clientwidth of HTML DOM element. The width and height is never going to change even when the element is rotated. It cannot be used for HTML DOM Elements.
getBoundingClientRect is common to both HTML and SVG elements. The bounded rectangle width and height will change when the element is rotated or when more elements are grouped.
The behaviour you see is correct, and consistent with the spec.
The transform gets applied, then the bbox is calculated in "current user units", i.e. the current user space. So if you want to see the result of a transform on the element you'd need to look at the bbox of a parent node or similar.
It's a bit confusing, but explained a lot better in the SVG Tiny 1.2 spec for SVGLocatable
That contains a number of examples that clarify what it's supposed to do.
there are at least 2 easy but somewhat hacky ways to do what you ask... if there are nicer (less hacky) ways, i haven't found them yet
EASY HACKy #1:
a) set up a rect that matches the "untransformed" bbox that group.getBBox() is returning
b) apply the group's "unapplied transform" to that rect
c) rect.getBBox() should now return the bbox you're looking for
EASY HACKY #2: (only tested in chrome)
a) use element.getBoundingClientRect(), which returns enough info for you to construct the bbox you're looking for
Apparently getBBox() doesn't take the transformations into consideration.
I can point you here, unfortunately I wasn't able to make it working: http://tech.groups.yahoo.com/group/svg-developers/message/22891
SVG groups have nasty practice - not to accumulate all transformations made. I have my way to cope with this issue. I'm using my own attributes to store current transformation data which I include in any further transformation. Use XML compatible attributes like alttext, value, name....or just x and y for storing accumulated value as atribute.
Example:
<g id="group" x="20" y="100" transform="translate(20, 100)">
<g id="subgroup" alttext="45" transform="rotate(45)">
<line...etc...
Therefore when I'm making transformations I'm taking those handmade attribute values, and when writing it back, I'm writing both transform and same value with attributes I made just for keeping all accumulated values.
Example for rotation:
function symbRot(evt) {
evt.target.ondblclick = function () {
stopBlur();
var ptx=symbG.parentNode.lastChild.getAttribute("cx");
var pty=symbG.parentNode.lastChild.getAttribute("cy");
var currRot=symbG.getAttributeNS(null, "alttext");
var rotAng;
if (currRot == 0) {
rotAng = 90
} else if (currRot == 90) {
rotAng = 180
} else if (currRot == 180) {
rotAng = 270
} else if (currRot == 270) {
rotAng = 0
};
symbG.setAttributeNS(null, "transform", "rotate(" + rotAng + "," + ptx + ", " + pty + ")");
symbG.setAttributeNS(null, "alttext", rotAng );
};
}
The following code takes into account the transformations (matrix or otherwise) from parents, itself, as well as children. So, it will work on a <g> element for example.
You will normally want to pass the parent <svg> as the third argument—toElement—as to return the computed bounding box in the coordinate space of the <svg> (which is generally the coordinate space we care about).
/**
* #param {SVGElement} element - Element to get the bounding box for
* #param {boolean} [withoutTransforms=false] - If true, transforms will not be calculated
* #param {SVGElement} [toElement] - Element to calculate bounding box relative to
* #returns {SVGRect} Coordinates and dimensions of the real bounding box
*/
function getBBox(element, withoutTransforms, toElement) {
var svg = element.ownerSVGElement;
if (!svg) {
return { x: 0, y: 0, cx: 0, cy: 0, width: 0, height: 0 };
}
var r = element.getBBox();
if (withoutTransforms) {
return {
x: r.x,
y: r.y,
width: r.width,
height: r.height,
cx: r.x + r.width / 2,
cy: r.y + r.height / 2
};
}
var p = svg.createSVGPoint();
var matrix = (toElement || svg).getScreenCTM().inverse().multiply(element.getScreenCTM());
p.x = r.x;
p.y = r.y;
var a = p.matrixTransform(matrix);
p.x = r.x + r.width;
p.y = r.y;
var b = p.matrixTransform(matrix);
p.x = r.x + r.width;
p.y = r.y + r.height;
var c = p.matrixTransform(matrix);
p.x = r.x;
p.y = r.y + r.height;
var d = p.matrixTransform(matrix);
var minX = Math.min(a.x, b.x, c.x, d.x);
var maxX = Math.max(a.x, b.x, c.x, d.x);
var minY = Math.min(a.y, b.y, c.y, d.y);
var maxY = Math.max(a.y, b.y, c.y, d.y);
var width = maxX - minX;
var height = maxY - minY;
return {
x: minX,
y: minY,
width: width,
height: height,
cx: minX + width / 2,
cy: minY + height / 2
};
}
I made a helper function, which returns various metrics of svg element (also bbox of transformed element).
The code is here:
SVGElement.prototype.getTransformToElement =
SVGElement.prototype.getTransformToElement || function(elem) {
return elem.getScreenCTM().inverse().multiply(this.getScreenCTM());
};
function get_metrics(el) {
function pointToLineDist(A, B, P) {
var nL = Math.sqrt((B.x - A.x) * (B.x - A.x) + (B.y - A.y) * (B.y - A.y));
return Math.abs((P.x - A.x) * (B.y - A.y) - (P.y - A.y) * (B.x - A.x)) / nL;
}
function dist(point1, point2) {
var xs = 0,
ys = 0;
xs = point2.x - point1.x;
xs = xs * xs;
ys = point2.y - point1.y;
ys = ys * ys;
return Math.sqrt(xs + ys);
}
var b = el.getBBox(),
objDOM = el,
svgDOM = objDOM.ownerSVGElement;
// Get the local to global matrix
var matrix = svgDOM.getTransformToElement(objDOM).inverse(),
oldp = [[b.x, b.y], [b.x + b.width, b.y], [b.x + b.width, b.y + b.height], [b.x, b.y + b.height]],
pt, newp = [],
obj = {},
i, pos = Number.POSITIVE_INFINITY,
neg = Number.NEGATIVE_INFINITY,
minX = pos,
minY = pos,
maxX = neg,
maxY = neg;
for (i = 0; i < 4; i++) {
pt = svgDOM.createSVGPoint();
pt.x = oldp[i][0];
pt.y = oldp[i][1];
newp[i] = pt.matrixTransform(matrix);
if (newp[i].x < minX) minX = newp[i].x;
if (newp[i].y < minY) minY = newp[i].y;
if (newp[i].x > maxX) maxX = newp[i].x;
if (newp[i].y > maxY) maxY = newp[i].y;
}
// The next refers to the transformed object itself, not bbox
// newp[0] - newp[3] are the transformed object's corner
// points in clockwise order starting from top left corner
obj.newp = newp; // array of corner points
obj.width = pointToLineDist(newp[1], newp[2], newp[0]) || 0;
obj.height = pointToLineDist(newp[2], newp[3], newp[0]) || 0;
obj.toplen = dist(newp[0], newp[1]);
obj.rightlen = dist(newp[1], newp[2]);
obj.bottomlen = dist(newp[2], newp[3]);
obj.leftlen = dist(newp[3], newp[0]);
// The next refers to the transformed object's bounding box
obj.BBx = minX;
obj.BBy = minY;
obj.BBx2 = maxX;
obj.BBy2 = maxY;
obj.BBwidth = maxX - minX;
obj.BBheight = maxY - minY;
return obj;
}
and full functional example is here:
http://jsbin.com/acowaq/1