Finding sentiment of sentence containing not word - nlp

I used a code for getting sentiment (sense i.e good, bad, average) of any sentence by matching the adjective word with my predefined set of good, bad, average words, Set of bad words, set of average words in the sentence. But for negation(sentence containing "not") I am not able to assign exact sense(whether good or bad or average) to the sentence containing not from my code.
Ex:- sentence-" Bob is best boy in the school." Since in this sentence there is one adjective "best" matching to the good set than Good sense is assigned to this sentence.
But, for negation sentence-"Bob is not best boy in the school". Since in this sentence there is only one adjective "best" matching to the good set than Good sense is assigned to this sentence. But here "not" makes the sense to bad but my code is not able to do handle "not" in the sentence.
Help me to solve the negation problem

"not" is a word to negate expressions in language. To use the term of "negation" would be better for the problem.
To handle "negation", one would use negation triggers (e.g. not, never) and their scopes in sentences. In "Bob is not best boy in the school" example, "best boy in the school" is scope of "not". Scope of negation could be detected via some basic rules or via heuristics using syntactic parse trees as well.
For sentiment analysis, if a sentiment-laden term passes in scope of a negation trigger, one can invert or dampen sentiment value of the trigger or flag the sentiment-laden term.
The case you mentioned is something to be investigated different, however. A superlative adjective in scope of negation may be investigated with adjective's antonym:
worst - bad - neutral - good - best
So these terms are "scaled" and negation conveys semantics this way:
"not best" implies one of "worst - bad - neutral - good", however in general between bad and good also other context of the sentence must be examined
"not good" implies one of "bad - neutral"
This concept is something that I took from Grace's scalar implicature. You can look that up for more detail.
In conclusion for a simple solution, if you use sentiment association scores for those kind of adjectives (e.g. best: +4) I suggest not to invert its score directly by multiplying with -1 when its under scope of negation, but multiplying it with -0.5 to find in between association.
Hope that helps, cheers.

The approach you are taking for "sentiment analysis" is very basic. You need to use some good algorithms for sentiment analysis, a good starting point is support vector machine, random forests which can give you good results without having huge training data. If you care about very good accuracy, then use deep neural nets. Some of the good option for datasets are mentioned Below.
Huge ngrams dataset from google storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://www.sananalytics.com/lab/twitter-sentiment/
http://inclass.kaggle.com/c/si650winter11/data
http://nlp.stanford.edu/sentiment/treebank.html
Because of the problem you are facing, people started using statistics for NLP. There are several other steps which are involved before you apply these algorithms like sentence tokenization, word tokenization, lexical analysis etc.

Related

NLP: retrieve vocabulary from text

I have some texts in different languages and, potentially, with some typo or other mistake, and I want to retrieve their own vocabulary. I'm not experienced with NLP in general, so maybe I use some word improperly.
With vocabulary I mean a collection of words of a single language in which every word is unique and the inflections for gender, number, or tense are not considered (e.g. think, thinks and thought are are all consider think).
This is the master problem, so let's reduce it to the vocabulary retrieving of one language, English for example, and without mistakes.
I think there are (at least) three different approaches and maybe the solution consists of a combination of them:
search in a database of words stored in relation with each others. So, I could search for thought (considering the verb) and read the associated information that thought is an inflection of think
compute the "base form" (a word without inflections) of a word by processing the inflected form. Maybe it can be done with stemming?
use a service by any API. Yes, I accept also this approach, but I'd prefer to do it locally
For a first approximation, it's not necessary that the algorithm distinguishes between nouns and verbs. For instance, if in the text there were the word thought like both noun and verb, it could be considered already present in the vocabulary at the second match.
We have reduced the problem to retrieve a vocabulary of an English text without mistakes, and without consider the tag of the words.
Any ideas about how to do that? Or just some tips?
Of course, if you have suggestions about this problem also with the others constraints (mistakes and multi-language, not only Indo-European languages), they would be much appreciated.
You need lemmatization - it's similar to your 2nd item, but not exactly (difference).
Try nltk lemmatizer for Python or Standford NLP/Clear NLP for Java. Actually nltk uses WordNet, so it is really combination of 1st and 2nd approaches.
In order to cope with mistakes use spelling correction before lemmatization. Take a look at related questions or Google for appropriate libs.
About part of speech tag - unfortunately, nltk doesn't consider POS tag (and context in general), so you should provide it with the tag that can be found by nltk pos tagging. Again, it is already discussed here (and related/linked questions). I'm not sure about Stanford NLP here - I guess it should consider context, but I was sure that NLTK does so. As I can see from this code snippet, Stanford doesn't use POS tags, while Clear NLP does.
About other languages - google for lemmatization models, since algorithm for most languages (at least from the same family) is almost the same, differences are in training data. Take a look here for example of German; it is a wrapper for several lemmatizers, as I can see.
However, you always can use stemmer at cost of precision, and stemmer is more easily available for different languages.
Topic Word has become an integral part of the rising debate in the present world. Some people perceive that Topic Word (Synonyms) beneficial, while opponents reject this notion by saying that it leads to numerous problems. From my point of view, Topic Word (Synonyms) has more positive impacts than negative around the globe. This essay will further elaborate on both positive and negative effects of this trend and thus will lead to a plausible conclusion.
On the one hand, there is a myriad of arguments in favour of my belief. The topic has a plethora of merits. The most prominent one is that the Topic Word (Synonyms). According to the research conducted by Western Sydney University, more than 70 percentages of the users were in favour of the benefits provided by the Topic Word (Synonyms). Secondly, Advantage of Essay topic. Thus, it can say that Topic Word (Synonyms) plays a vital role in our lives.
On the flip side, critics may point out that one of the most significant disadvantages of the Topic Word (Synonyms) is that due to Demerits relates to the topic. For instance, a survey conducted in the United States reveals that demerit. Consequently, this example explicit shows that it has various negative impacts on our existence.
As a result, after inspection upon further paragraphs, I profoundly believe that its benefits hold more water instead of drawbacks. Topic Word (Synonyms) has become a crucial part of our life. Therefore, efficient use of Topic Word (Synonyms) method should promote; however, excessive and misuse should condemn.

Extracting related text given a sentence, keywords or topic

Are there any known ways (above and beyond statistical analysis, but not necessarily excluding it as being part of the solution) to relate sentences or concepts to one another using Natural Language Processing. Thus far I've only worked with NLTK and Stanford-NLP to aid in my project, but I am open to alternative open source solutions.
As an example take the following George Orwell essay (http://orwell.ru/library/essays/wiw/english/e_wiw). Suppose I gave the application the sentence
"What are George Orwell's opinions on writers."
or perhaps
"George Orwell believes writers enjoy writing to express their creativity, to make a point and for their egos."
Might yield lines from the essay like
"The aesthetic motive is very feeble in a lot of writers, but even a pamphleteer or writer of textbooks will have pet words and phrases which appeal to him for non-utilitarian reasons; or he may feel strongly about typography, width of margins, etc."
or
"Serious writers, I should say, are on the whole more vain and self-centered than journalists, though less interested in money."
I understand that this is not easy and I may not achieve much accuracy, but I was hoping for ideas on what already exists and what I could try to start off, or at least get the best results possible based on what is already known and out there.
The simplest way of doing this might be using some distance functions (such as Cosine similarity) between your query sentence and the sentence pool. It's easy to implement. Create a vocabulary from the text collection and each sentence is represented as a vector. You can use TF-IDF to represent values in the vector, and calculate the cosine similarity between sentences, and get the highest scored sentence with respect to your query sentence.
Or you can build index from your corpus and use for example Lucene and let it do the work for you.
You may also consider using LSA (Latent Semantic Analysis) where you can get the similarity between sentences.
From what I understand from your question (and also your comment) is you are more interested in understanding the meaning of individual sentence and then equate with each other in proximity. Statistical approach, in my opinion, is more for "getting a feel" of the sentence than understanding it. In my opinion I would suggest deep parsing approach.
Deep parse the sentence, understand what roles the words play in the sentence, understand what the subject-verb-object model (left to right parsing and such techniques) and then have a vocabulary that helps you categorise the nouns and verbs.
e.g.
"Serious writers, I should say, are on the whole more vain and self-centered than journalists, though less interested in money."
Parsing this sentence, lets you understand the subject of the sentence is "serious writers" (serious being an adjective, writers basically). In the verb form it states "are" (current state) and "interested". Each verb then points to some more vocabulary including adjectives. If you arrange this vocabulary in correct manner (and keep building it) I think you should get somewhere with your problem.

Finding how relevant a text is, given a whitelist and blacklist of words/phrases

This is a case of me wanting to search for something online but not knowing what it's called.
I have a collection of job descriptions in text files, some only a sentence or two long, most a paragraph or two. I want to write a script that, given a set of rules, will notify me when it finds a job description I would want.
For example, lets say I am looking for a job in PHP programming, but not a full-time position and not a designing position. So my "rule book" could be:
want: PHP
want: web programming
want: telecommuting
do not want: designing
do not want: full-time position
What is a method I could use to sort these files into a "pass" (descriptions that match what I'm looking for) and a "fail" (descriptions are not relevant)? Some ideas I was considering:
Count the occurrences of the phrases in the text file that are also in my "rule book", and reject those that contain words that I do not want. This doesn't always work, though, because what if a description says "web designing not required"? Then my algorithm would say "That contains the word designing so it is not relevant" when it really was!
When searching the text for phrases that I do and do not want, count phrases within a certain Levenshtein distance as the same phrase. For example, designing and design should be treated the same way, as well as misspellings of words, such as programing.
I have a large collection of descriptions that I have looked through manually. Is there a way I could "teach" the program "these are examples of good descriptions, these are examples of bad ones"?
Does anyone know what this "filtering process" is called, and/or have any advice or methods on how I can accomplish this?
You basically have a text classification or document classification problem. This is a specific case of binary classification, which is itself a specific case of supervised learning. It's well studied problem, there are many tools to do it. Basically you give a set of good documents and bad documents to a learning or training process, which finds words that correlate strongly with positive and negative documents and it outputs a function capable of classifying unseen documents as positive or not. Naive Bayes is the simplest learning algorithm for this kind of task, and it will do a decent job. There are fancier algorithms like Logistic Regression and Support Vector Machines which will probably do a somewhat better, but they are more complicated.
To determine which variants words are actually equivalent to each other, you want to do some kind of stemming. The Porter stemmer is a common choice here.

Fuzzy sentence search algorithms

Suppose I have a set of phrases - about 10 000 - of average length - 7-20 words in which I want to find some given phrase. The phrase I am looking for could have some errors - for example miss one or two words, have some words misplaced, or some random words - for example my database contains "As I was riding my red bike, I saw Christine", and I want it to much "As I was riding my blue bike, saw Christine", or "I was riding my bike, I saw Christine and Marion". What could be some good approach to this problem? I know about Levenhstein's distance, and I also suppose that this problem may have no easy, good solution.
A good text search engine will provide capabilities such as you describe, fsh. A typical approach would be to create a query that matches if any of the words occurs and orders the results using a weight based on number of terms occurring in proximity to each other and weighted inversely to their probability of occurring, since uncommon words will be less likely to co-occur by chance. There's a whole theory of this sort of thing called information retrieval, but maybe you know about that. Furthermore you'd like to make sure that word-level fuzziness gets accounted for by normalizing case, punctuation and the like and applying some basic linguistic transformations (stemming), and in some cases introducing a dictionary of synonyms, especially when there is domain knowledge available to condition it.
If you're interested in messing around with this stuff, try an open-source search engine, this article by Vik gives a reasonable survey from the perspective of 2009, and this one by Middleton and Baeza-Yates gives a good detailed introduction to the topic.

What are the most challenging issues in Sentiment Analysis(opinion mining)?

Opinion Mining/Sentiment Analysis is a somewhat recent subtask of Natural Language processing.Some compare it to text classification,some take a more deep stance towards it. What do you think about the most challenging issues in Sentiment Analysis(opinion mining)? Can you name a few?
The key challenges for sentiment analysis are:-
1) Named Entity Recognition - What is the person actually talking about, e.g. is 300 Spartans a group of Greeks or a movie?
2) Anaphora Resolution - the problem of resolving what a pronoun, or a noun phrase refers to. "We watched the movie and went to dinner; it was awful." What does "It" refer to?
3) Parsing - What is the subject and object of the sentence, which one does the verb and/or adjective actually refer to?
4) Sarcasm - If you don't know the author you have no idea whether 'bad' means bad or good.
5) Twitter - abbreviations, lack of capitals, poor spelling, poor punctuation, poor grammar, ...
I agree with Hightechrider that those are areas where Sentiment Analysis accuracy can see improvement. I would also add that sentiment analysis tends to be done on closed-domain text for the most part. Attempts to do it on open domain text usually winds up having very bad accuracy/F1 measure/what have you or else it is pseudo-open-domain because it only looks at certain grammatical constructions. So I would say topic-sensitive sentiment analysis that can identify context and make decisions based on that is an exciting area for research (and industry products).
I'd also expand his 5th point from Twitter to other social media sites (e.g. Facebook, Youtube), where short, ungrammatical utterances are commonplace.
I think the answer is the language complexity, mistakes in grammar, and spelling. There is vast of ways people expresses there opinions, e.g., sarcasms could be wrongly interpreted as extremely positive sentiment.
The question may be too generic, because there are several types of sentiment analysis (document level, sentence level, comparative sentiment analysis, etc.) and each type has some specific problems.
Generally speaking, I agree with the answer by #Ian Mercer, and I would add 3 other issues:
How to detect a more in depth sentiment/emotion. Positive and negative is a very simple analysis, one of the challenge is how to extract emotions like how much hate there is inside the opinion, how much happiness, how much sadness, etc.
How to detect the object that the opinion is positive for and the object that the opinion is negative for. For example, if you say "She won him!", this means a positive sentiment for her and a negative sentiment for him, at the same time.
How to analyze very subjective sentences or paragraphs. Sometimes even for humans it is very hard to agree on the sentiment of this high subjective texts. Imagine for a computer...
Although this is a little bit an old question, let me add some note related to Arabic sentiment anlsysis in specific. Arabic language has morphological complexities and dialectal varieties which require advanced preprocessing and lexical building processes that surpass what is needed for the English language.
Please, refer to
"https://www.researchgate.net/publication/280042139_Survey_on_Arabic_Sentiment_Analysis_in_Twitter"
"https://link.springer.com/chapter/10.1007/978-3-642-35326-0_14"

Resources