I'm trying to connect to a ScyllaDB database running on IBM Cloud from Spark 2.3 running on IBM Analytics Engine.
I'm starting the spark shell like so ...
$ spark-shell --master local[1] \
--files jaas.conf \
--packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.3.0,datastax:spark-cassandra-connector:2.3.0-s_2.11,commons-configuration:commons-configuration:1.10 \
--conf "spark.driver.extraJavaOptions=-Djava.security.auth.login.config=jaas.conf" \
--conf "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=jaas.conf" \
--conf spark.cassandra.connection.host=xxx1.composedb.com,xxx2.composedb.com,xxx3.composedb.com \
--conf spark.cassandra.connection.port=28730 \
--conf spark.cassandra.auth.username=scylla \
--conf spark.cassandra.auth.password=SECRET \
--conf spark.cassandra.connection.ssl.enabled=true \
--num-executors 1 \
--executor-cores 1
Then executing the following spark scala code:
import com.datastax.spark.connector._
import org.apache.spark.sql.cassandra._
val stocksRdd = sc.cassandraTable("stocks", "stocks")
stocksRdd.count()
However, I see a bunch of warnings:
18/08/23 10:11:01 WARN Cluster: You listed xxx1.composedb.com/xxx.xxx.xxx.xxx:28730 in your contact points, but it wasn't found in the control host's system.peers at startup
18/08/23 10:11:01 WARN Cluster: You listed xxx1.composedb.com/xxx.xxx.xxx.xxx:28730 in your contact points, but it wasn't found in the control host's system.peers at startup
18/08/23 10:11:06 WARN Session: Error creating pool to /xxx.xxx.xxx.xxx:28730
com.datastax.driver.core.exceptions.ConnectionException: [/xxx.xxx.xxx.xxx:28730] Pool was closed during initialization
...
However, after the stacktrace in the warning, I see the output I am expecting:
res2: Long = 4
If I navigate to the compose UI, I see a map json:
[
{"xxx.xxx.xxx.xxx:9042":"xxx1.composedb.com:28730"},
{"xxx.xxx.xxx.xxx:9042":"xxx2.composedb.com:28730"},
{"xxx.xxx.xxx.xxx:9042":"xxx3.composedb.com:28730"}
]
It seems the warning is related to the map file.
What are the implications of the warning? Can I ignore it?
NOTE: I've seen a similar question, however I believe this question is different because of the map file and I have no control over how the scylladb cluster has been setup by Compose.
This is just warning. The warning is happening because the IPs that spark is trying to reach are not know to Scylla itself. Apparently Spark is connecting to the cluster and retrieving the expected information so you should be fine.
Related
I have a local setup with minikube and I'm trying to use spark-submit to submit a job to a local Kubernetes. The idea here is to use my local machine's spark-submit to submit to the kubernetes master which will handle creating a spark cluster and taking it down when the work is finished.
I'm using the image bitnami/spark:3.2.1 and the following command:
./bin/spark-submit --master k8s://https://127.0.0.1:52388 \
--deploy-mode cluster \
--conf spark.executor.instances=1 \
--conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
--conf spark.kubernetes.container.image=bitnami/spark:3.2.1 \
--class org.apache.spark.examples.JavaSparkPi \
--name spark-pi \
local:///opt/bitnami/spark/examples/jars/spark-examples_2.12-3.2.1.jar
This does not seem to work and the logs in the spark driver are:
[...]
Caused by: java.io.IOException: Failed to connect to spark-master:7077
[...]
and
[...]
Caused by: java.net.UnknownHostException: spark-master
[...]
If I use the docker-image-tool.sh to build a custom spark docker image with the python bindings and use that, it works perfectly. How is bitnami's image special and why doesn't it recognise that the master in this case is kubernetes?
I also tried using the option conf spark.kubernetes.driverEnv.SPARK_MASTER_URL=spark://127.0.0.1:7077 when submitting but the error was similar to above.
it seems, in docker pyspark shell in local-client mode is working and able to connect to hive. However, issuing spark-submit with all dependencies it fails with below error.
20/08/24 14:03:01 INFO storage.BlockManagerMasterEndpoint: Registering block manager test.server.com:41697 with 6.2 GB RAM, BlockManagerId(3, test.server.com, 41697, None)
20/08/24 14:03:02 INFO hive.HiveUtils: Initializing HiveMetastoreConnection version 1.2.1 using Spark classes.
20/08/24 14:03:02 INFO hive.metastore: Trying to connect to metastore with URI thrift://metastore.server.com:9083
20/08/24 14:03:02 ERROR transport.TSaslTransport: SASL negotiation failure
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism level: Failed to find any Kerberos tgt)]
at com.sun.security.sasl.gsskerb.GssKrb5Client.evaluateChallenge(GssKrb5Client.java:211)
at org.apache.thrift.transport.TSaslClientTransport.handleSaslStartMessage(TSaslClientTransport.java:94)
at org.apache.thrift.transport.TSaslTransport.open(TSaslTransport.java:271)
Running a simple pi example on pyspark works fine with no kerberos issues, but when trying to access hive getting kerberos error.
Spark-submit command:
spark-submit --master yarn --deploy-mode cluster --files=/etc/hive/conf/hive-site.xml,/etc/hive/conf/yarn-site.xml,/etc/hive/conf/hdfs-site.xml,/etc/hive/conf/core-site.xml,/etc/hive/conf/mapred-site.xml,/etc/hive/conf/ssl-client.xml --name fetch_hive_test --executor-memory 12g --num-executors 20 test_hive_minimal.py
test_hive_minimal.py is a simple pyspark script to show tables in test db:
from pyspark.sql import SparkSession
#declaration
appName = "test_hive_minimal"
master = "yarn"
# Create the Spark session
sc = SparkSession.builder \
.appName(appName) \
.master(master) \
.enableHiveSupport() \
.config("spark.hadoop.hive.enforce.bucketing", "True") \
.config("spark.hadoop.hive.support.quoted.identifiers", "none") \
.config("hive.exec.dynamic.partition", "True") \
.config("hive.exec.dynamic.partition.mode", "nonstrict") \
.getOrCreate()
# Define the function to load data from Teradata
#custom freeform query
sql = "show tables in user_tables"
df_new = sc.sql(sql)
df_new.show()
sc.stop()
Can anyone throw some light how to fix this? Isnt kerberos tickets managed automatically by yarn? all other hadoop resources are accessible.
UPDATE:
Issue was fixed after sharing vol mount on the docker container and passing keytab/principal along with hive-site.xml for accessing metastore.
spark-submit --master yarn \
--deploy-mode cluster \
--jars /srv/python/ext_jars/terajdbc4.jar \
--files=/etc/hive/conf/hive-site.xml \
--keytab /home/alias/.kt/alias.keytab \ #this is mounted and kept in docker local path
--principal alias#realm.com.org \
--name td_to_hive_test \
--driver-cores 2 \
--driver-memory 2G \
--num-executors 44 \
--executor-cores 5 \
--executor-memory 12g \
td_to_hive_test.py
I think that your driver have tickets but that not the case of your executors. Add the following parameters to your spark submit :
--principal : you can get principal this way : klist -k
--keytab : path to keytab
more informations : https://spark.apache.org/docs/latest/running-on-yarn.html#yarn-specific-kerberos-configuration
Can you try below command line property while running a job on the cluster.
-Djavax.security.auth.useSubjectCredsOnly=false
You can add above property to Spark submit command
I'm using Spark on YARN with
Ambari 2.7.4
HDP Standalone 3.1.4
Spark 2.3.2
Hadoop 3.1.1
Graphite on Docker latest
I was trying to get Spark metrics with Graphite sink following this tutorial.
Advanced spark2-metrics-properties in Ambari are:
driver.sink.graphite.class=org.apache.spark.metrics.sink.GraphiteSink
executor.sink.graphite.class=org.apache.spark.metrics.sink.GraphiteSink
worker.sink.graphite.class=org.apache.spark.metrics.sink.GraphiteSink
master.sink.graphite.class=org.apache.spark.metrics.sink.GraphiteSink
*.sink.graphite.host=ap-test-m.c.gcp-ps.internal
*.sink.graphite.port=2003
*.sink.graphite.protocol=tcp
*.sink.graphite.period=10
*.sink.graphite.unit=seconds
*.sink.graphite.prefix=app-test
*.source.jvm.class=org.apache.spark.metrics.source.JvmSource
Spark submit:
export HADOOP_CONF_DIR=/usr/hdp/3.1.4.0-315/hadoop/conf/; spark-submit --class com.Main --master yarn --deploy-mode client --driver-memory 1g --executor-memory 10g --num-executors 2 --executor-cores 2 spark-app.jar /data
As a result I'm only getting driver metrics.
Also, I was trying to add metrics.properties to spark-submit command together with global spark metrics props, but that didn't help.
And finally, I tried conf in spark-submit and in java SparkConf:
--conf "spark.metrics.conf.driver.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink"
--conf "spark.metrics.conf.executor.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink"
--conf "worker.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink"
--conf "master.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink"
--conf "spark.metrics.conf.*.sink.graphite.host"="host"
--conf "spark.metrics.conf.*.sink.graphite.port"=2003
--conf "spark.metrics.conf.*.sink.graphite.period"=10
--conf "spark.metrics.conf.*.sink.graphite.unit"=seconds
--conf "spark.metrics.conf.*.sink.graphite.prefix"="app-test"
--conf "spark.metrics.conf.*.source.jvm.class"="org.apache.spark.metrics.source.JvmSource"
But that didn't help either.
CSVSink also gives only driver metrics.
UPD
When I submit job in cluster mode - I'm getting the same metrics as in Spark History Server. But the jvm metrics are still absent.
Posting to a dated question, but maybe it will help.
Seems like executors do not have metrics.properties file on their filesystems.
One way to confirm this would be to look at the executor logs:
2020-01-16 10:00:10 ERROR MetricsConfig:91 - Error loading configuration file metrics.properties
java.io.FileNotFoundException: metrics.properties (No such file or directory)
at org.apache.spark.metrics.MetricsConfig.loadPropertiesFromFile(MetricsConfig.scala:132)
at org.apache.spark.metrics.MetricsConfig.initialize(MetricsConfig.scala:55)
at org.apache.spark.metrics.MetricsSystem.<init>(MetricsSystem.scala:95)
at org.apache.spark.metrics.MetricsSystem$.createMetricsSystem(MetricsSystem.scala:233)
To fix this on yarn pass two parameters to spark-submit:
$ spark-submit \
--files metrics.properties \
--conf spark.metrics.conf=metrics.properties
The --files option ensures that files specified in the option will be shared to executors.
The spark.metrics.conf option specifies a custom file location for the metrics.
Another way to fix the issue would be to place the metrics.properties file into $SPARK_HOME/conf/metrics.properties on both the driver and executor before starting the job.
More on metrics here: https://spark.apache.org/docs/latest/monitoring.html
I would like to submit a spark job with configuring additional jar on hdfs, however the hadoop gives me a warning on skipping remote jar. Although I can still get my final results on hdfs, I cannot obtain the effect of additional remote jar. I would appreciate if you can give me some suggestions.
Many thanks,
root#cluster-1-m:~# hadoop fs -ls hdfs://10.146.0.4:8020/tmp/jvm-profiler-1.0.0.jar
-rwxr-xr-x 2 hdfs hadoop 7097056 2019-01-23 14:44 hdfs://10.146.0.4:8020/tmp/jvm-profiler-1.0.0.jar
root#cluster-1-m:~#/usr/lib/spark/bin/spark-submit \
--deploy-mode cluster \
--master yarn \
--conf spark.jars=hdfs://10.146.0.4:8020/tmp/jvm-profiler-1.0.0.jar \
--conf spark.driver.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar \
--conf spark.executor.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar \
--class com.github.ehiggs.spark.terasort.TeraSort \
/root/spark-terasort-master/target/spark-terasort-1.1-SNAPSHOT-jar-with-dependencies.jar /tmp/data/terasort_in /tmp/data/terasort_out
Warning: Skip remote jar hdfs://10.146.0.4:8020/tmp/jvm-profiler-1.0.0.jar.
19/01/24 02:20:31 INFO org.apache.hadoop.yarn.client.RMProxy: Connecting to ResourceManager at cluster-1-m/10.146.0.4:8032
19/01/24 02:20:31 INFO org.apache.hadoop.yarn.client.AHSProxy: Connecting to Application History server at cluster-1-m/10.146.0.4:10200
19/01/24 02:20:34 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl: Submitted application application_1548293702222_0002
I am trying to do spark-submit on minikube(Kubernetes) from local machine CLI with command
spark-submit --master k8s://https://127.0.0.1:8001 --name cfe2
--deploy-mode cluster --class com.yyy.Test --conf spark.executor.instances=2 --conf spark.kubernetes.container.image docker.io/anantpukale/spark_app:1.1 local://spark-0.0.1-SNAPSHOT.jar
I have a simple spark job jar built on verison 2.3.0. I also have containerized it in docker and minikube up and running on virtual box.
Below is exception stack:
Exception in thread "main" org.apache.spark.SparkException: Must specify the driver container image at org.apache.spark.deploy.k8s.submit.steps.BasicDriverConfigurationStep$$anonfun$3.apply(BasicDriverConfigurationStep.scala:51) at org.apache.spark.deploy.k8s.submit.steps.BasicDriverConfigurationStep$$anonfun$3.apply(BasicDriverConfigurationStep.scala:51) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.deploy.k8s.submit.steps.BasicDriverConfigurationStep.<init>(BasicDriverConfigurationStep.scala:51)
at org.apache.spark.deploy.k8s.submit.DriverConfigOrchestrator.getAllConfigurationSteps(DriverConfigOrchestrator.scala:82)
at org.apache.spark.deploy.k8s.submit.KubernetesClientApplication$$anonfun$run$5.apply(KubernetesClientApplication.scala:229)
at org.apache.spark.deploy.k8s.submit.KubernetesClientApplication$$anonfun$run$5.apply(KubernetesClientApplication.scala:227)
at org.apache.spark.util.Utils$.tryWithResource(Utils.scala:2585)
at org.apache.spark.deploy.k8s.submit.KubernetesClientApplication.run(KubernetesClientApplication.scala:227)
at org.apache.spark.deploy.k8s.submit.KubernetesClientApplication.start(KubernetesClientApplication.scala:192)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:879)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:197)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:227)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:136)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) 2018-04-06 13:33:52 INFO ShutdownHookManager:54 - Shutdown hook called 2018-04-06 13:33:52 INFO ShutdownHookManager:54 - Deleting directory C:\Users\anant\AppData\Local\Temp\spark-6da93408-88cb-4fc7-a2de-18ed166c3c66
Look like bug with default value for parameters spark.kubernetes.driver.container.image, that must be spark.kubernetes.container.image. So try specify driver/executor container image directly:
spark.kubernetes.driver.container.image
spark.kubernetes.executor.container.image
From the source code, the only available conf options are:
spark.kubernetes.container.image
spark.kubernetes.driver.container.image
spark.kubernetes.executor.container.image
And I noticed that Spark 2.3.0 has changed a lot in terms of k8s implementation compared to 2.2.0. For example, instead of specifying driver and executor separately, the official starter's guide is to use a single image given to spark.kubernetes.container.image.
See if this works:
spark-submit \
--master k8s://http://127.0.0.1:8001 \
--name cfe2 \
--deploy-mode cluster \
--class com.oracle.Test \
--conf spark.executor.instances=2 \
--conf spark.kubernetes.container.image=docker/anantpukale/spark_app:1.1 \
--conf spark.kubernetes.authenticate.submission.oauthToken=YOUR_TOKEN \
--conf spark.kubernetes.authenticate.submission.caCertFile=PATH_TO_YOUR_CERT \
local://spark-0.0.1-SNAPSHOT.jar
The token and cert can be found on k8s dashboard. Follow the instructions to make Spark 2.3.0 compatible docker images.