Groovy star import and usage of "partial" packages - groovy

To my surprise I have learned today that the following works just fine in Groovy:
import java.util.concurrent.*
def atomicBool = new atomic.AtomicBoolean(true)
i.e. after the star import, I can use a 'partial' package to refer to java.util.concurrent.atomic.AtomicBoolean.
Obviously, the same is not valid in Java:
import java.util.concurrent.*;
public class Sample {
public static void main(String[] args) {
// compiler error: 'atomic' cannot be resolved to a type
new atomic.AtomicBoolean(true);
}
}
So it seems that Groovy's idea of a package is similar to C++ (or C#) namespaces in this regard.
Question to the Groovy experts:
Is this by design or is it a (potentially unintended) side effect of the way the interpreter treats star imports?
If it is by design, can you point me to a section in the documentation or language specification where this behavior is documented? (There is no mention of this in the documentation on Star Import and neither in the language spec as far as I can tell or at least I couldn't find anything.)

Based on Groovy source code, this behavior seems to be intended. Before we dig deeper into Groovy internals you have to be aware of one thing - Groovy compiles to a bytecode that can be represented by a valid Java code. It means that Groovy code like the one form your example actually compiles to something like this (without compile static and type checked transformations):
import groovy.lang.Binding;
import groovy.lang.Script;
import java.util.concurrent.atomic.AtomicBoolean;
import org.codehaus.groovy.runtime.InvokerHelper;
import org.codehaus.groovy.runtime.ScriptBytecodeAdapter;
import org.codehaus.groovy.runtime.callsite.CallSite;
public class test extends Script {
public test() {
CallSite[] var1 = $getCallSiteArray();
}
public test(Binding context) {
CallSite[] var2 = $getCallSiteArray();
super(context);
}
public static void main(String... args) {
CallSite[] var1 = $getCallSiteArray();
var1[0].call(InvokerHelper.class, test.class, args);
}
public Object run() {
CallSite[] var1 = $getCallSiteArray();
AtomicBoolean atomicBool = (AtomicBoolean)ScriptBytecodeAdapter.castToType(var1[1].callConstructor(AtomicBoolean.class, true), AtomicBoolean.class);
return var1[2].callCurrent(this, atomicBool);
}
}
As you can see this Java class uses full java.util.concurrent.atomic.AtomicBoolean import and this is actually what Groovy transforms your input source code to.
How does it happen?
As you may know Groovy builds Abstract Syntax Tree (AST) from the input source file and it iterates over all nodes (like expressions, variable definitions, method calls etc.) and applies transformations. Groovy uses class called ResolverVisitor that is designed to resolve types. When Groovy compiles your code it finds ConstructorCallExpression:
new atomic.AtomicBoolean(true)
It sees that the expected type of the object you are trying to create is atomic.AtomicBoolean, so ResolverVisitor starts resolving the type by calling resolveOrFail(type, cce); at line 1131.
It tries several resolving strategies that fail until it reaches method resolveFromModule at line 695. What happens here is it iterates over all star imports (single java.util.concurrent.* in your case), then it concatenates star import with the type name and it checks if qualified name created from this concatenation is a valid type class. Luckily it is in your case:
When type gets resolved, Groovy replaces initial type with this resolved valid type name in the abstract syntax tree. After this operation your input code looks more like this:
import java.util.concurrent.*
java.util.concurrent.atomic.AtomicBoolean atomicBool = new java.util.concurrent.atomic.AtomicBoolean(true)
This is what compiler gets eventually. Of course fully qualified name gets replaced with the import (this is what Java compiler does with qualified names).
Was this "feature" introduced by designed?
I can't tell you that. However we can read from the source code, that this happens on purpose and type resolving like this is implemented with intention.
Why it is not documented?
I guess no one actually recommend using imports that way. Groovy is very powerful and you are able to do many things in a many different ways, but it doesn't mean you should do so. Star imports are pretty controversial, because using star imports over explicit imports makes your code more error-prone due to possible class import conflicts. But if you want to know exact answer to this kind of questions you would have to ask Groovy language designers and core developers - they may give you straight answer without any doubts.

Related

ArchUnit: how to test for imports of specific classes outside of current package?

To externalize UI strings we use the "Messages-class" approach as supported e.g. in Eclipse and other IDEs. This approach requires that in each package where one needs some UI strings there has to be a class "Messages" that offers a static method String getString(key) via which one obtains the actual String to display to the user. The Strings are internally accessed/fetched using Java's Resources mechanism for i18n.
Esp. after some refactoring - we again and again have accidental imports from a class Messages from a different package.
Thus I would like to create an archunit rule checking whether we only access classes called "Messages" from the very same package. I.e. each import of a class x.y.z.Messages is an error if the package x.y.z is not the same package as the current class (i.e. the class that contains the import)
I got as far as this:
#ArchTest
void preventReferencesToMessagesOutsideCurrentPackage(JavaClasses classes) {
ArchRule rule;
rule = ArchRuleDefinition.noClasses()
.should().accessClassesThat().haveNameMatching("Messages")
.???
;
rule.check(classes);
}
but now I got stuck at the ???.
How can one phrase a condition "and the referenced/imported class "Messages" is not in the same package as this class"?
I somehow got lost with all these archunit methods of which none seems to fit here nor lend itself to compose said condition. Probably I just can't see the forest for the many trees.
Any suggestion or guidance anyone?
You need to operate on instances of JavaAccess to validate the dependencies. JavaAccess provides information about the caller and the target such that you can validate the access dynamically depending on the package name of both classes.
DescribedPredicate<JavaAccess<?>> isForeignMessageClassPredicate =
new DescribedPredicate<JavaAccess<?>>("target is a foreign message class") {
#Override
public boolean apply(JavaAccess<?> access) {
JavaClass targetClass = access.getTarget().getOwner();
if ("Message".equals(targetClass.getSimpleName())) {
JavaClass callerClass = access.getOwner().getOwner();
return !targetClass.getPackageName().equals(callerClass.getPackageName());
}
return false;
}
};
ArchRule rule =
noClasses().should().accessTargetWhere(isForeignMessageClassPredicate);

How to declare a constructor or extends a class of a groovy script?

I am working on a shared library for Jenkins, and I want to access some utilities methods between some classes, but not all of them, thus I have established some statements:
I would like to avoid using static methods, since it does not access pipeline steps directly, and passing the pipeline instance every call would be a pain;
I would like to avoid a singleton as well, or prefixing every method call with the util class' instance;
Since it is not supposed to be shared between all classes I would like to avoid putting every method as a file on vars/ special directory, but I would like a similar behavior;
Despite extending the class would be a anti-pattern, it would be acceptable, though I would like to avoid the verbose Java syntax for declaring the class the same name as the file, once it is implicit in groovy;
This question does solve my problem partially, although there are issues with serialization, I noted that when I use checkpoint and some build is resumed from some stage, the instance loses all extra methods.
This other question would have helped me fix the serialization issue, however the author seems the have solved the root cause of his problem using a way that is not the original question titled for.
Is there a way to extends a implicit script class in groovy without using the class NameOfFile extends SomeOtherClass { put every thing inside this block } syntax? And without working with inner-class?
Or else, is there a way to declare a constructor using the script groovy syntax analogue as the previous question?
Or even, is there a way to change the serialization behavior to install the extra methods again after unserializing?
Appendix
The script syntax works more-or-less like this:
Consider the content of file src/cicd/pipeline/SomePipeline.groovy:
package cicd.pipeline
// there is no need to wrap everything inside class SomePipeline,
// since it is implicit
def method() {
// instance method, here I can access pipeline steps freely
}
def static otherMethod() {
// static method, here it is unable to access pipeline steps
// without a instance
}
#groovy.transform.Field
def field
def call() {
// if the class is used as method it will run
this.method()
SomePipeline.otherMethod() // or simply otherMethod() should work
this.field = 'foo'
println "this instance ${this.getClass().canonicalName} should be cicd.pipeline.SomePipeline"
}
// any code other than methods or variables with #Field
// annotation will be inside a implicit run method that is
// triggered likewise main method but isn't a static one
def localVar = 'foo'
println "It will not execute on constructor since it is on run: $localVar"
println "Method: ${org.codehaus.groovy.runtime.StackTraceUtils.sanitize(new Throwable()).stackTrace[0].methodName}"
println "this instance ${this.getClass().canonicalName} should be cicd.pipeline.SomePipeline"
If I was going to use the Java verbose syntax I would have to wrap almost everything inside a class SomePipeline which is implicit in groovy, this is the script syntax I want to keep.
I realised that this.getClass().superclass.canonicalName when outside Jenkins pipeline is groovy.lang.Script and when inside pipeline is org.jenkinsci.plugins.workflow.cps.CpsScript and based on this resource I was able to elaborate the following solution:
abstract class CustomScript extends org.jenkinsci.plugins.workflow.cps.CpsScript {
public CustomScript() {
// do something here, it will always execute regardless
// serialization, and before everything
}
}
#groovy.transform.BaseScript CustomScript baseScript
That is it, worked as expected! Of course you can elaborate this solution better in order to reduce repeating and avoid inner-classes, but I will leave it for your imagination.

Practical use of metaprogramming

I started to learn metaprogramming. So far I used it to read annotations in Java and create sql statements based on given class but I don't see any practical use in it. Can you give me an example where and how you used it in your programs?
Annotating a method to be recogonized as a unit test.
import static org.junit.jupiter.api.Assertions.assertEquals;
import example.util.Calculator;
import org.junit.jupiter.api.Test;
class MyFirstJUnitJupiterTests {
private final Calculator calculator = new Calculator();
#Test
void addition() {
assertEquals(2, calculator.add(1, 1));
}
}
Note that the annotation here #Test exists as a flag. When the test runner launches, it registers a listener for annotated methods, and if it encounters an annotated method that is annotated with the Test annotation interface, it will register that test in the "list of tests to run"
See https://junit.org/junit5/docs/current/user-guide/ for more details.
There are many examples of annotations in the wild. This is just but one of them.

Alternative for deprecated JAXBToStringBuilder

We have an auto generated class which is importing the following classes:
import org.apache.cxf.jaxb.JAXBToStringBuilder;
import org.apache.cxf.jaxb.JAXBToStringStyle;
Both of these seem to be deprecated, I am looking for an alternative, did some search but couldn't find anything similar to use for the following method:
#Override
public String toString() {
return JAXBToStringBuilder.valueOf(this, JAXBToStringStyle.DEFAULT_STYLE);
}
The javadoc for 2.7.x says
Class was moved to project org.apache.cxf.xjc-utils:cxf-xjc-runtime so generated code does not have to depend on cxf
Depending on a current cxf-xjc-runtime and changing the imports seemed to be enough for me.
Apache Commons has a class called ToStringBuilder that you can introduce in your code to help representing objects as Strings in a human readable format.
See the doc here.
Check the constructor where you can specify the style:
ToStringBuilder(Object object, ToStringStyle style)
Constructs a builder for the specified object using the a defined output style.
There you can provide to the default style you mentioned in your question:
public String toString() {
return new ToStringBuilder(this, ToStringStyle.DEFAULT_STYLE).toString();
}

Is there any way to use groovy and java code for the same class?

I mainly program in groovy, but occasionally it's too slow. So I write a separate .java class, and put the code that needs to run faster in a java method and call that java method from my groovy code.
This causes me to end up with two separate files and two separate classes. Is there any way I could embed a java method right into the groovy file, maybe marking it with an annotation to indicate that it is java?
This is the idea behind groovy++. Marking a class or method with the #Typed annotation will cause it to use static typing instead of dynamic typing, while still retaining a lot of goodness of groovy.
While not exactly java, typed groovy++ methods generally perform about the same as java would.
More information on groovy++ is available at: https://code.google.com/p/groovypptest/wiki/Welcome
You don't need to do anything special.
Just write the Java class behind the groovy class. 99% of all Java source is valid groovy source as well.
class GroovyClass {
def a;
def doSomething(x,y) { return x*y; }
}
class JavaClass {
SomeType someVar;
public JavaClass() { /* ... */ } // some contructor
public void doit(String a, int b) {} // full typed method, that is java
}
Groovy++ is somethign completely different.
The JavaClass needs to have everything fully typed to be "Java" however your problem can be solved far easyer if you just use types in the relevant groovy methods.
class AnotherGroovyClass {
// typed
public Result someMethod(SomeArg arg1, SomeOtherArg arg2) {
}
def someVariable; // untyped
}
If you think the lack of speed comes from the dynamic nature of groovy then just use full types at the relevant points.

Resources